These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 6520699)

  • 21. Interactions of cephradine and cefaclor with the intestinal absorption of D-galactose.
    Idoate I; Mendizábal MV; Urdaneta E; Larralde J
    J Pharm Pharmacol; 1996 Jun; 48(6):645-50. PubMed ID: 8832502
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transport mechanisms of beta-lactam antibiotics across everted rat gut.
    Penzotti SC; Poole JW
    J Pharm Sci; 1974 Nov; 63(11):1803-6. PubMed ID: 4214915
    [No Abstract]   [Full Text] [Related]  

  • 23. Contribution of passive transport mechanisms to the intestinal absorption of beta-lactam antibiotics.
    Sugawara M; Saitoh H; Iseki K; Miyazaki K; Arita T
    J Pharm Pharmacol; 1990 May; 42(5):314-8. PubMed ID: 1976777
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of medium chain glycerides on enteral and rectal absorption of beta-lactam and aminoglycoside antibiotics.
    Unowsky J; Behl CR; Beskid G; Sattler J; Halpern J; Cleeland R
    Chemotherapy; 1988; 34(4):272-6. PubMed ID: 3208545
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inactivation of the intestinal uptake system for beta-lactam antibiotics by diethylpyrocarbonate.
    Kramer W; Girbig F; Petzoldt E; Leipe I
    Biochim Biophys Acta; 1988 Aug; 943(2):288-96. PubMed ID: 3401482
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of the transport system for beta-lactam antibiotics and dipeptides in rat renal brush-border membrane vesicles by photoaffinity labeling.
    Kramer W; Leipe I; Petzoldt E; Girbig F
    Biochim Biophys Acta; 1988 Mar; 939(1):167-72. PubMed ID: 3349078
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transport of beta-lactam antibiotics in kidney brush border membrane. Determinants of their affinity for the oligopeptide/H+ symporter.
    Daniel H; Adibi SA
    J Clin Invest; 1993 Nov; 92(5):2215-23. PubMed ID: 8227336
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of the oral absorption of several aminopenicillins: determination of intrinsic membrane absorption parameters in the rat intestine in situ.
    Oh D-M ; Sinko PJ; Amidon GL
    Int J Pharm; 1992 Sep; 85(1-3):181-7. PubMed ID: 11537280
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interaction of the orally active dianionic cephalosporin cefixime with the uptake system for oligopeptides and alpha-amino-beta-lactam antibiotics in rabbit small intestine.
    Kramer W; Gutjahr U; Kowalewski S; Girbig F
    Biochem Pharmacol; 1993 Aug; 46(3):542-6. PubMed ID: 8347176
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transport characteristics of cephalosporin antibiotics across intestinal brush-border membrane in man, rat and rabbit.
    Sugawara M; Toda T; Iseki K; Miyazaki K; Shiroto H; Kondo Y; Uchino J
    J Pharm Pharmacol; 1992 Dec; 44(12):968-72. PubMed ID: 1361560
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Carrier-mediated transport of cephalexin via the dipeptide transport system in rat renal brush-border membrane vesicles.
    Inui K; Okano T; Takano M; Saito H; Hori R
    Biochim Biophys Acta; 1984 Jan; 769(2):449-54. PubMed ID: 6696892
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interaction of 31 beta-lactam antibiotics with the H+/peptide symporter PEPT2: analysis of affinity constants and comparison with PEPT1.
    Luckner P; Brandsch M
    Eur J Pharm Biopharm; 2005 Jan; 59(1):17-24. PubMed ID: 15567297
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impairment of jejunal absorption rate of carnosine by glycylglycine in man in vivo.
    Cook GC
    Gut; 1976 Apr; 17(4):252-7. PubMed ID: 773786
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evidence for the existence of a common transport system of beta-lactam antibiotics in isolated rat hepatocytes.
    Tamai I; Terasaki T; Tsuji A
    J Antibiot (Tokyo); 1985 Dec; 38(12):1774-80. PubMed ID: 4093337
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cefaclor uptake by the proton-dependent dipeptide transport carrier of human intestinal Caco-2 cells and comparison to cephalexin uptake.
    Dantzig AH; Tabas LB; Bergin L
    Biochim Biophys Acta; 1992 Dec; 1112(2):167-73. PubMed ID: 1457450
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transport mechanism of cephalexin in isolated hepatocytes.
    Tamai I; Tsuji A
    J Pharmacobiodyn; 1987 Nov; 10(11):632-8. PubMed ID: 3446770
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intestinal transport of beta-lactam antibiotics: analysis of the affinity at the H+/peptide symporter (PEPT1), the uptake into Caco-2 cell monolayers and the transepithelial flux.
    Bretschneider B; Brandsch M; Neubert R
    Pharm Res; 1999 Jan; 16(1):55-61. PubMed ID: 9950279
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigations of influx and accumulation processes of beta-lactam antibiotics and their role in the transmural transfer across rat jejunum.
    Yamashita S; Yamazaki Y; Masada M; Nadai T; Kimura T; Sezaki H
    J Pharmacobiodyn; 1986 Apr; 9(4):368-74. PubMed ID: 3735059
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of identical binding polypeptides for cephalosporins and dipeptides in intestinal brush-border membrane vesicles by photoaffinity labeling.
    Kramer W
    Biochim Biophys Acta; 1987 Nov; 905(1):65-74. PubMed ID: 3676315
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Peptide carrier-mediated transport in intestinal brush border membrane vesicles of rats and rabbits: cephradine uptake and inhibition.
    Yuasa H; Amidon GL; Fleisher D
    Pharm Res; 1993 Mar; 10(3):400-4. PubMed ID: 8464813
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.