BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 6521064)

  • 1. [Three dimensional model structure of the heart ventricle and abdomen for retrogressive-problem solving in ECG].
    Douniwa K
    Iyodenshi To Seitai Kogaku; 1984 Sep; 22(5):362-3. PubMed ID: 6521064
    [No Abstract]   [Full Text] [Related]  

  • 2. Pediatric cardiac transplantation: three-dimensional printing of anatomic models for surgical planning of heart transplantation in patients with univentricular heart.
    Sodian R; Weber S; Markert M; Loeff M; Lueth T; Weis FC; Daebritz S; Malec E; Schmitz C; Reichart B
    J Thorac Cardiovasc Surg; 2008 Oct; 136(4):1098-9. PubMed ID: 18954663
    [No Abstract]   [Full Text] [Related]  

  • 3. Constructing a 3-D mesh model for electrical cardiac activity simulation.
    Hsiao CH; Kao T
    Comput Biomed Res; 2000 Feb; 33(1):23-42. PubMed ID: 10772782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solving the ECG forward problem by means of standard h- and h-hierarchical adaptive linear boundary element method: comparison with two refinement schemes.
    Shou G; Xia L; Jiang M; Wei Q; Liu F; Crozier S
    IEEE Trans Biomed Eng; 2009 May; 56(5):1454-64. PubMed ID: 19272882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation of Brugada syndrome using cellular and three-dimensional whole-heart modeling approaches.
    Xia L; Zhang Y; Zhang H; Wei Q; Liu F; Crozier S
    Physiol Meas; 2006 Nov; 27(11):1125-42. PubMed ID: 17028406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combination of the LSQR method and a genetic algorithm for solving the electrocardiography inverse problem.
    Jiang M; Xia L; Shou G; Tang M
    Phys Med Biol; 2007 Mar; 52(5):1277-94. PubMed ID: 17301454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [A new method for quantification of 2-dimensional echocardiographic images of the left ventricle (author's transl)].
    Klicpera M; Joskowicz G; Probst P; Pachinger O
    Acta Med Austriaca; 1982; 9(2):50-4. PubMed ID: 7080789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficiency differences in computational simulations of the total cavo-pulmonary circulation with and without compliant vessel walls.
    Orlando W; Shandas R; DeGroff C
    Comput Methods Programs Biomed; 2006 Mar; 81(3):220-7. PubMed ID: 16455152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heuristic problems in defining the three-dimensional arrangement of the ventricular myocytes.
    Anderson RH; Ho SY; Sanchez-Quintana D; Redmann K; Lunkenheimer PP
    Anat Rec A Discov Mol Cell Evol Biol; 2006 Jun; 288(6):579-86. PubMed ID: 16673424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organization of ventricular fibrillation in the human heart: experiments and models.
    ten Tusscher KH; Mourad A; Nash MP; Clayton RH; Bradley CP; Paterson DJ; Hren R; Hayward M; Panfilov AV; Taggart P
    Exp Physiol; 2009 May; 94(5):553-62. PubMed ID: 19168541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A sketch-based interface for modeling myocardial fiber orientation that considers the layered structure of the ventricles.
    Takayama K; Ashihara T; Ijiri T; Igarashi T; Haraguchi R; Nakazawa K
    J Physiol Sci; 2008 Dec; 58(7):487-92. PubMed ID: 18926007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Explaining the T-wave shape in the ECG.
    di Bernardo D; Murray A
    Nature; 2000 Jan; 403(6765):40. PubMed ID: 10638744
    [No Abstract]   [Full Text] [Related]  

  • 13. Assessment of left ventricular function parameters with a new three-dimensional shape model.
    Bansmann PM; Sénégas J; Muellerleile K; Lund G; Kemper J; Adam G; Stork A
    Rofo; 2009 Feb; 181(2):161-8. PubMed ID: 19173155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cardiac embryogenesis: a three-dimensional approach.
    Butler J; Vincent RN; Reed M; Collins GF
    Can J Cardiol; 1987 Apr; 3(3):111-7. PubMed ID: 3594291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A linear system of partial differential equations modeling the resting potential of a heart with regional ischemia.
    MacLachlan MC; Sundnes J; Skavhaug O; Lysaker M; Nielsen BF; Tveito A
    Math Biosci; 2007 Nov; 210(1):238-52. PubMed ID: 17544454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A graphic, three-dimensional teaching model to demonstrate the topography of the human heart.
    Johnson D; Whitaker RH
    Clin Anat; 1995; 8(6):407-11. PubMed ID: 8713161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A silicone rubber mould of the heart.
    Torrent-Guasp FF; Whimster WF; Redmann K
    Technol Health Care; 1997 Apr; 5(1-2):13-20. PubMed ID: 9134615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solving the ECG forward problem by means of a meshless finite element method.
    Li ZS; Zhu SA; He B
    Phys Med Biol; 2007 Jul; 52(13):N287-96. PubMed ID: 17664567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of cardiac motion on solution of the electrocardiography inverse problem.
    Jiang M; Xia L; Shou G; Wei Q; Liu F; Crozier S
    IEEE Trans Biomed Eng; 2009 Apr; 56(4):923-31. PubMed ID: 19272916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An electromechanical model of the heart for image analysis and simulation.
    Sermesant M; Delingette H; Ayache N
    IEEE Trans Med Imaging; 2006 May; 25(5):612-25. PubMed ID: 16689265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.