BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 6525194)

  • 1. Novel isolation of ubiquinone-binding proteins located in different sites of beef heart mitochondrial respiratory chain.
    Suzuki H; Ozawa T
    Biochem Int; 1984 Nov; 9(5):563-8. PubMed ID: 6525194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantities of ubiquinone bound to proteins in beef heart mitochondria.
    Suzuki H; Ozawa T
    Biochem Biophys Res Commun; 1984 Nov; 124(3):889-95. PubMed ID: 6391483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification of the iron-sulfur protein, ubiquinone-binding protein, and cytochrome c1 from a single source of mitochondrial complex III.
    Shimomura Y; Nishikimi M; Ozawa T
    Anal Biochem; 1986 Feb; 153(1):126-31. PubMed ID: 3008590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Steady-state kinetics of the reduction of coenzyme Q analogs by complex I (NADH:ubiquinone oxidoreductase) in bovine heart mitochondria and submitochondrial particles.
    Fato R; Estornell E; Di Bernardo S; Pallotti F; Parenti Castelli G; Lenaz G
    Biochemistry; 1996 Feb; 35(8):2705-16. PubMed ID: 8611577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New evidence for the multiplicity of ubiquinone- and inhibitor-binding sites in the mitochondrial complex I.
    Tormo JR; Estornell E
    Arch Biochem Biophys; 2000 Sep; 381(2):241-6. PubMed ID: 11032411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An ubiquinone-binding protein in mitochondrial NADH-ubiquinone reductase (Complex I).
    Suzuki H; Ozawa T
    Biochem Biophys Res Commun; 1986 Aug; 138(3):1237-42. PubMed ID: 3092820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of endogenous ubiquinone on the reduction and oxidation of short exogenous ubiquinone homologs in beef heart mitochondria.
    Landi L; Pasquali P; Cabrini L; Lenaz G
    Boll Soc Ital Biol Sper; 1979 Oct; 55(20):2142-8. PubMed ID: 575763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural organization of the mitochondrial respiratory chain.
    Genova ML; Bianchi C; Lenaz G
    Ital J Biochem; 2003 Mar; 52(1):58-61. PubMed ID: 12833641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The interaction of Q analogs, particularly hydroxydecyl benzoquinone (idebenone), with the respiratory complexes of heart mitochondria.
    Esposti MD; Ngo A; Ghelli A; Benelli B; Carelli V; McLennan H; Linnane AW
    Arch Biochem Biophys; 1996 Jun; 330(2):395-400. PubMed ID: 8660670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Reconstitution of succinate-ubiquinone reductase of the respiratory chain of mitochondria].
    Gavrikov VG; Gavrikova EV; Vinogradov AD
    Biokhimiia; 1980 Apr; 45(4):747-55. PubMed ID: 7378499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new ubiquinone metabolite and its activity at the mitochondrial bc1 complex.
    Gille L; Stamberg W; Jäger W; Reznicek G; Netscher T; Rosenau T
    Chem Res Toxicol; 2007 Apr; 20(4):591-9. PubMed ID: 17381131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specification of the inhibitory action of MIBG on the respiratory chain by EPR scanning.
    Cornelissen J; Van Belzen R; Van Gennip AH; Voûte PA; Van Kuilenburg AB
    Anticancer Res; 1997; 17(1A):265-8. PubMed ID: 9066663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Induction of calcium conductivity of artificial lipid membranes by a glycoprotein isolated from mitochondria and a homogenate of bovine heart].
    Mironova GD; Sirota TV; Pronevich LA; Trofimenko NV; Mironov GP; Kondrashova MN
    Biofizika; 1980; 25(2):276-80. PubMed ID: 7370338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The multiple functions of coenzyme Q.
    Nohl H; Kozlov AV; Staniek K; Gille L
    Bioorg Chem; 2001 Feb; 29(1):1-13. PubMed ID: 11300690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of nitric oxide on electron transport complexes.
    Welter R; Yu L; Yu CA
    Arch Biochem Biophys; 1996 Jul; 331(1):9-14. PubMed ID: 8660677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemical and physiological aspects of ubiquinone function.
    Pobezhimova TP; Voinikov VK
    Membr Cell Biol; 2000; 13(5):595-602. PubMed ID: 10987383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iromycins from Streptomyces sp. and from synthesis: new inhibitors of the mitochondrial electron transport chain.
    Surup F; Shojaei H; von Zezschwitz P; Kunze B; Grond S
    Bioorg Med Chem; 2008 Feb; 16(4):1738-46. PubMed ID: 18054490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Succinate-dependent lipid peroxidation and its prevention by reduced ubiquinone in beef heart submitochondrial particles.
    Eto Y; Kang D; Hasegawa E; Takeshige K; Minakami S
    Arch Biochem Biophys; 1992 May; 295(1):101-6. PubMed ID: 1575504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ubiquinone accumulates in the mitochondria of yeast mutated in the ubiquinone binding protein, Qcr8p.
    Hagerman RA; Waring NJ; Willis RA; Hagerman AE
    Biochem Biophys Res Commun; 2006 May; 344(1):241-5. PubMed ID: 16597436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic characterization of mitochondrial complex I inhibitors using annonaceous acetogenins.
    Tormo JR; González MC; Cortes D; Estornell E
    Arch Biochem Biophys; 1999 Sep; 369(1):119-26. PubMed ID: 10462447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.