BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 6525344)

  • 21. The nature of the hydrophobic binding of small peptides at the bilayer interface: implications for the insertion of transbilayer helices.
    Jacobs RE; White SH
    Biochemistry; 1989 Apr; 28(8):3421-37. PubMed ID: 2742845
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lipid-protein interactions studied by introduction of a tryptophan residue: the mechanosensitive channel MscL.
    Powl AM; East JM; Lee AG
    Biochemistry; 2003 Dec; 42(48):14306-17. PubMed ID: 14640699
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interaction of C-terminal loop 13 of sodium-glucose cotransporter SGLT1 with lipid bilayers.
    Raja MM; Kinne RK
    Biochemistry; 2005 Jun; 44(25):9123-9. PubMed ID: 15966736
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure-activity relationships of the unique and potent agouti-related protein (AGRP)-melanocortin chimeric Tyr-c[beta-Asp-His-DPhe-Arg-Trp-Asn-Ala-Phe-Dpr]-Tyr-NH2 peptide template.
    Wilczynski A; Wilson KR; Scott JW; Edison AS; Haskell-Luevano C
    J Med Chem; 2005 Apr; 48(8):3060-75. PubMed ID: 15828845
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Orientational and aggregational states of magainin 2 in phospholipid bilayers.
    Matsuzaki K; Murase O; Tokuda H; Funakoshi S; Fujii N; Miyajima K
    Biochemistry; 1994 Mar; 33(11):3342-9. PubMed ID: 8136371
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes.
    Dathe M; Schümann M; Wieprecht T; Winkler A; Beyermann M; Krause E; Matsuzaki K; Murase O; Bienert M
    Biochemistry; 1996 Sep; 35(38):12612-22. PubMed ID: 8823199
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Homooligopeptides composed of hydrophobic amino acid residues interact in a specific manner by taking alpha-helix or beta-structure toward lipid bilayers.
    Lee S; Yoshitomi H; Morikawa M; Ando S; Takiguchi H; Inoue T; Sugihara G
    Biopolymers; 1995 Sep; 36(3):391-8. PubMed ID: 7669922
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis and binding affinities of analogues of cholecystokinin-(30-33) as probes for central nervous system cholecystokinin receptors.
    Horwell DC; Beeby A; Clark CR; Hughes J
    J Med Chem; 1987 Apr; 30(4):729-32. PubMed ID: 3560164
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Minimal peptide length for interaction of amphipathic alpha-helical peptides with phosphatidylcholine liposomes.
    McLean LR; Hagaman KA; Owen TJ; Krstenansky JL
    Biochemistry; 1991 Jan; 30(1):31-7. PubMed ID: 1988028
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Control and role of pH in peptide-lipid interactions in oriented membrane samples.
    Misiewicz J; Afonin S; Ulrich AS
    Biochim Biophys Acta; 2015 Mar; 1848(3):833-41. PubMed ID: 25511586
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interaction of class A amphipathic helical peptides with phospholipid unilamellar vesicles.
    Gazzara JA; Phillips MC; Lund-Katz S; Palgunachari MN; Segrest JP; Anantharamaiah GM; Snow JW
    J Lipid Res; 1997 Oct; 38(10):2134-46. PubMed ID: 9374135
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of end group blockage on the properties of a class A amphipathic helical peptide.
    Venkatachalapathi YV; Phillips MC; Epand RM; Epand RF; Tytler EM; Segrest JP; Anantharamaiah GM
    Proteins; 1993 Apr; 15(4):349-59. PubMed ID: 8460106
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of variations in the structure of a polyleucine-based alpha-helical transmembrane peptide on its interaction with phosphatidylcholine bilayers.
    Liu F; Lewis RN; Hodges RS; McElhaney RN
    Biochemistry; 2002 Jul; 41(29):9197-207. PubMed ID: 12119034
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lipid bilayer perturbations induced by simple hydrophobic peptides.
    Jacobs RE; White SH
    Biochemistry; 1987 Sep; 26(19):6127-34. PubMed ID: 3689766
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-resolution NMR studies of fibrinogen-like peptides in solution: structural basis for the bleeding disorder caused by a single mutation of Gly(12) to Val(12) in the A alpha chain of human fibrinogen Rouen.
    Ni F; Konishi Y; Bullock LD; Rivetna MN; Scheraga HA
    Biochemistry; 1989 Apr; 28(7):3106-19. PubMed ID: 2742828
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The structure of the antimicrobial peptide Ac-RRWWRF-NH2 bound to micelles and its interactions with phospholipid bilayers.
    Jing W; Hunter HN; Hagel J; Vogel HJ
    J Pept Res; 2003 May; 61(5):219-29. PubMed ID: 12662355
    [TBL] [Abstract][Full Text] [Related]  

  • 37. End-to-end distance distribution in fluorescent derivatives of bradykinin in interaction with lipid vesicles.
    Montaldi LR; Berardi M; Souza ES; Juliano L; Ito AS
    J Fluoresc; 2012 Jul; 22(4):1151-8. PubMed ID: 22488046
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tryptophan-rich antimicrobial peptides: comparative properties and membrane interactions.
    Schibli DJ; Epand RF; Vogel HJ; Epand RM
    Biochem Cell Biol; 2002; 80(5):667-77. PubMed ID: 12440706
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interaction of a hydrophobic model peptide and its fatty acid derivative with lipid vesicles.
    Joseph M; Nagaraj R
    FEBS Lett; 1988 Oct; 238(2):411-4. PubMed ID: 3169267
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of variations in the structure of a polyleucine-based alpha-helical transmembrane peptide on its interaction with phosphatidylglycerol bilayers.
    Liu F; Lewis RN; Hodges RS; McElhaney RN
    Biochemistry; 2004 Mar; 43(12):3679-87. PubMed ID: 15035638
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.