These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 6525370)

  • 1. [Formation of differences in the electric potentials of the membrane vesicle in Staphylococcus aureus].
    Vinnikov AI
    Biokhimiia; 1984 Dec; 49(12):2041-4. PubMed ID: 6525370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Formation of the transmembrane electrochemical potential on Staphylococcus cells and membrane vesicles].
    Vinnikov AI
    Ukr Biokhim Zh (1978); 1987; 59(6):50-4. PubMed ID: 3433381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [ATP synthesis in Staphylococcus aureus cells during induction of membrane potentials and proton gradient].
    Vinnikov AI
    Biokhimiia; 1988 May; 53(5):853-5. PubMed ID: 2458773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bax translocation to mitochondria subsequent to a rapid loss of mitochondrial membrane potential.
    Smaili SS; Hsu YT; Sanders KM; Russell JT; Youle RJ
    Cell Death Differ; 2001 Sep; 8(9):909-20. PubMed ID: 11526446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Cd2+ on ATP synthesis coupled to electron transfer in cadmium-resistant and -sensitive Staphylococcus aureus.
    Tynecka Z; Malm A; Zajac J
    Acta Biochim Pol; 1990; 37(1):121-4. PubMed ID: 2087901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional identification of electrogenic Na+-translocating ATPase in the plasma membrane of the halotolerant microalga Dunaliella maritima.
    Popova LG; Shumkova GA; Andreev IM; Balnokin YV
    FEBS Lett; 2005 Sep; 579(22):5002-6. PubMed ID: 16137688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Transmembrane electric potential as a regulator of functional activity of biomembranes].
    Konev SV; Kapler GV
    Biofizika; 1988; 33(6):1018-22. PubMed ID: 3073810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Effects of Staphylococcus aureus cell-bound protein A on adenosine triphosphate and nitric oxide inhibitory actions in smooth muscles].
    Melenevs'ka NV; Miroshnychenko MS; Filippov IB; Kholodna LS; Shuba MF
    Fiziol Zh (1994); 2006; 52(1):22-9. PubMed ID: 16553295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ethylazinphos interaction with membrane lipid organization induces increase of proton permeability and impairment of mitochondrial bioenergetic functions.
    Videira RA; Antunes-Madeira MC; Madeira VM
    Toxicol Appl Pharmacol; 2001 Sep; 175(3):209-16. PubMed ID: 11559019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energetics of Cd2+ efflux system in cadmium-resistant Staphylococcus aureus 17810R.
    Tynecka Z; Malm A
    Acta Biochim Pol; 1995; 42(1):119-23. PubMed ID: 7653154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition by nilutamide of the mitochondrial respiratory chain and ATP formation. Possible contribution to the adverse effects of this antiandrogen.
    Berson A; Schmets L; Fisch C; Fau D; Wolf C; Fromenty B; Deschamps D; Pessayre D
    J Pharmacol Exp Ther; 1994 Jul; 270(1):167-76. PubMed ID: 8035313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromium(VI) interaction with plant and animal mitochondrial bioenergetics: a comparative study.
    Fernandes MA; Santos MS; Alpoim MC; Madeira VM; Vicente JA
    J Biochem Mol Toxicol; 2002; 16(2):53-63. PubMed ID: 11979422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Porin and cytochrome oxidase containing contact sites involved in the oxidation of cytosolic NADH.
    La Piana G; Marzulli D; Gorgoglione V; Lofrumento NE
    Arch Biochem Biophys; 2005 Apr; 436(1):91-100. PubMed ID: 15752713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Respiratory chain of the lung fluke Paragonimus westermani: facultative anaerobic mitochondria.
    Takamiya S; Wang H; Hiraishi A; Yu Y; Hamajima F; Aoki T
    Arch Biochem Biophys; 1994 Jul; 312(1):142-50. PubMed ID: 8031121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [ATP synthesis in the membrane fragments of Staphylococcus aureus cells induced by a sudden increase in pH].
    Serezhenkov VA; Malenkova IV; Talybov ShT; Kaprel'iants AS; Davydov RM
    Biofizika; 1986; 31(6):972-5. PubMed ID: 3801524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial malate dehydrogenase, decarboxylating ("malic" enzyme) and transhydrogenase activities of adult Hymenolepis microstoma (Cestoda).
    Fioravanti CF
    J Parasitol; 1982 Apr; 68(2):213-20. PubMed ID: 7077455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 2-Oxoglutarate transport system in Staphylococcus aureus.
    Tynecka Z; Korona-Głowniak I; Loś R
    Arch Microbiol; 2001 Jul; 176(1-2):143-50. PubMed ID: 11479714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Superoxide formation and lipid peroxidation by the mitochondrial electron-transfer chain].
    Takeshige K
    Rinsho Shinkeigaku; 1994 Dec; 34(12):1269-71. PubMed ID: 7774132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of [3H]acetylcholine active transport by tetraphenylborate and other anions.
    Anderson DC; King SC; Parsons SM
    Mol Pharmacol; 1983 Jul; 24(1):55-9. PubMed ID: 6865926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in mitochondrial mass, membrane potential, and cellular adenosine triphosphate content during the cell cycle of human leukemic (HL-60) cells.
    Sweet S; Singh G
    J Cell Physiol; 1999 Jul; 180(1):91-6. PubMed ID: 10362021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.