These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 6525654)

  • 1. Degradation of nucleic acids with ozone. V. Mechanism of action of ozone on deoxyribonucleoside 5'-monophosphates.
    Ishizaki K; Shinriki N; Ueda T
    Chem Pharm Bull (Tokyo); 1984 Sep; 32(9):3601-6. PubMed ID: 6525654
    [No Abstract]   [Full Text] [Related]  

  • 2. Degradation of nucleic acids with ozone. I. Degradation of nucleobases, ribonucleosides and ribonucleoside-5'-monophosphates.
    Ishizaki K; Shinriki N; Ikehata A; Ueda T
    Chem Pharm Bull (Tokyo); 1981 Mar; 29(3):868-72. PubMed ID: 7249159
    [No Abstract]   [Full Text] [Related]  

  • 3. Degradation of nucleic acids with ozone. VI. Labilization of the double-helical structure of calf thymus deoxyribonucleic acid.
    Shinriki N; Ishizaki K; Sato S; Miura K; Sawadaishi K; Ueda T
    Chem Pharm Bull (Tokyo); 1984 Sep; 32(9):3636-40. PubMed ID: 6525657
    [No Abstract]   [Full Text] [Related]  

  • 4. Degradation of nucleic acids with ozone. III. Mode of ozone-degradation of mouse proline transfer ribonucleic acid (tRNA) and isoleucine tRNA.
    Shinriki N; Ishizaki K; Miura K; Ueda T; Harada F
    Chem Pharm Bull (Tokyo); 1983 Oct; 31(10):3601-8. PubMed ID: 6561072
    [No Abstract]   [Full Text] [Related]  

  • 5. Degradation of nucleic acids with ozone. IV. Specific internucleotidic bond-cleavage of ozone-treated transfer ribonucleic acids with aniline-acetate.
    Miura K; Ueda T; Shinriki N; Ishizaki K; Harada F
    Chem Pharm Bull (Tokyo); 1984 Feb; 32(2):651-7. PubMed ID: 6733811
    [No Abstract]   [Full Text] [Related]  

  • 6. Degradation of nucleic acids with ozone. II. Degradation of yeast RNA, yeast phenylalanine tRNA and tobacco mosaic virus RNA.
    Shinriki N; Ishizaki K; Ikehata A; Yoshizaki T; Nomura A; Miura K; Mizuno Y
    Biochim Biophys Acta; 1981 Oct; 655(3):323-8. PubMed ID: 7025912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. STUDIES OF THE NUCLEOTIDE ARRANGEMENT IN DEOXYRIBONUCLEIC ACIDS. IX. SELECTIVE DEGRADATION OF PYRIMIDINE DEOXYRIBONUCLEOTIDES.
    TEMPERLI A; TUERLER H; RUEST P; DANON A; CHARGAFF E
    Biochim Biophys Acta; 1964 Nov; 91():462-76. PubMed ID: 14254018
    [No Abstract]   [Full Text] [Related]  

  • 8. Survival of aerosolized bacteriophage phi X174 in air containing ozone--olefin mixtures.
    Mik G; de Groot I; Gerbrandy JL
    J Hyg (Lond); 1977 Apr; 78(2):189-98. PubMed ID: 265341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of external deoxyribonucleosides on deoxyribonucleoside triphosphate concentrations in human lymphocytes.
    Tattersall MH; Ganeshaguru K; Hoffbrand AV
    Biochem Pharmacol; 1975 Aug; 24(16):1495-8. PubMed ID: 1238090
    [No Abstract]   [Full Text] [Related]  

  • 10. In vitro incorporation of deoxyribonucleoside diphosphates into DNA.
    Pollock JM; Werner R
    Biochem Biophys Res Commun; 1975 Apr; 63(3):699-705. PubMed ID: 1131259
    [No Abstract]   [Full Text] [Related]  

  • 11. Antioxidants vs lung disease.
    Roehm JN; Hadley JG; Menzel DB
    Arch Intern Med; 1971 Jul; 128(1):88-93. PubMed ID: 5088417
    [No Abstract]   [Full Text] [Related]  

  • 12. Effects of DDMP and DDEP on the deoxyribonucleoside triphosphate concentrations in human cells.
    Ganeshaguru K; Hoffbrand AV
    Biochem Pharmacol; 1977 Mar; 26(6):543-5. PubMed ID: 849352
    [No Abstract]   [Full Text] [Related]  

  • 13. Cell-cycle dependent variation in the levels of deoxyribonucleoside triphosphate in mouse T-lymphoma cells.
    Eriksson S; Groppi V; Ullman B; Martin DW
    Adv Exp Med Biol; 1984; 165 Pt B():407-10. PubMed ID: 6372384
    [No Abstract]   [Full Text] [Related]  

  • 14. Deoxyribonucleoside triphosphate metabolism of leukemic cells.
    Omine M; Iwata N; Arai T; Suda T
    Nihon Ketsueki Gakkai Zasshi; 1977 Dec; 40(6):1092-103. PubMed ID: 273360
    [No Abstract]   [Full Text] [Related]  

  • 15. [Interaction of alkylating oligonucleotide derivatives with mammalian cells. A study of the uptake mechanism of derivative cells].
    Vlasov VV; Ivanova EM; Kutiavin IV; Raĭt AS; Iurchenko LV
    Mol Biol (Mosk); 1989; 23(1):93-100. PubMed ID: 2739651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The reaction of formaldehyde with deoxynucleotides and DNA in the presence of amino acids and lysine-rich histone.
    Siomin YA; Simonov VV; Poverenny AM
    Biochim Biophys Acta; 1973 Nov; 331(1):27-32. PubMed ID: 4543402
    [No Abstract]   [Full Text] [Related]  

  • 17. Studies on the penetration of mammalian cells by deoxyribonucleoside-5'-phosphates.
    Anwar Waqar M; Taber RL; Huberman JA
    J Cell Physiol; 1979 Nov; 101(2):251-9. PubMed ID: 511953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peptide antibiotic-dinucleotide interactions. Nuclear magnetic resonance investigations of complex formation between actinomycin D and d-pGpC in aqueous solution.
    Patel DJ
    Biochemistry; 1974 May; 13(11):2388-95. PubMed ID: 4831638
    [No Abstract]   [Full Text] [Related]  

  • 19. Changes in ribo- and deoxyribonucleoside triphosphate pools within the cell cycle of a synchronized mouse fibroblast cell line.
    McCormick PJ; Danhauser LL; Rustum YM; Bertram JS
    Biochim Biophys Acta; 1983 Mar; 756(1):36-40. PubMed ID: 6824746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purine deoxyribonucleoside induced hepatotoxicity in the mouse.
    Renshaw J; Paine RM; Taylor GA; Harrap KR
    Adv Exp Med Biol; 1984; 165 Pt B():363-6. PubMed ID: 6609540
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.