These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1024 related articles for article (PubMed ID: 6526990)
21. Nuclei of the solitary tract: efferent projections to the lower brain stem and spinal cord of the cat. Loewy AD; Burton H J Comp Neurol; 1978 Sep; 181(2):421-49. PubMed ID: 690272 [TBL] [Abstract][Full Text] [Related]
22. Nonretinal projections to the medial terminal accessory optic nucleus in rabbit and rat: a retrograde and anterograde transport study. Giolli RA; Torigoe Y; Blanks RH J Comp Neurol; 1988 Mar; 269(1):73-86. PubMed ID: 3361005 [TBL] [Abstract][Full Text] [Related]
23. Afferents to the flocculus of the cerebellum in the rhesus macaque as revealed by retrograde transport of horseradish peroxidase. Langer T; Fuchs AF; Scudder CA; Chubb MC J Comp Neurol; 1985 May; 235(1):1-25. PubMed ID: 3989000 [TBL] [Abstract][Full Text] [Related]
24. The afferent connections of the tectum mesencephali in two chondrichthyans, the shark Scyliorhinus canicula and the ray Raja clavata. Smeets WJ J Comp Neurol; 1982 Feb; 205(2):139-52. PubMed ID: 7076889 [TBL] [Abstract][Full Text] [Related]
25. Brain stem origins of spinal projections in the lizard Tupinambis nigropunctatus. Cruce WL; Newman DB J Comp Neurol; 1981 May; 198(2):185-207. PubMed ID: 7240441 [TBL] [Abstract][Full Text] [Related]
26. Functional and anatomical organization of cardiovascular pressor and depressor sites in the lateral hypothalamic area: I. Descending projections. Allen GV; Cechetto DF J Comp Neurol; 1992 Jan; 315(3):313-32. PubMed ID: 1740546 [TBL] [Abstract][Full Text] [Related]
27. Descending projections to the hindbrain and spinal cord in the paddlefish Polyodon spathula. Metzen MG; Chambwa M; Wilkens LA; Hofmann MH Brain Res; 2010 Mar; 1317():33-45. PubMed ID: 20051233 [TBL] [Abstract][Full Text] [Related]
28. The origin of reticulospinal fibers in the rat: a HRP study. Satoh K J Hirnforsch; 1979; 20(3):313-22. PubMed ID: 536593 [TBL] [Abstract][Full Text] [Related]
29. Origin of cerebellar projections to the region of the oculomotor complex, medial pontine reticular formation, and superior colliculus in New World monkeys: a retrograde horseradish peroxidase study. Gonzalo-Ruiz A; Leichnetz GR; Smith DJ J Comp Neurol; 1988 Feb; 268(4):508-26. PubMed ID: 3356803 [TBL] [Abstract][Full Text] [Related]
30. The origin of descending pathways in the dorsolateral funiculus of the spinal cord of the cat and rat: further studies on the anatomy of pain modulation. Basbaum AI; Fields HL J Comp Neurol; 1979 Oct; 187(3):513-31. PubMed ID: 489790 [TBL] [Abstract][Full Text] [Related]
31. Exteroceptive and proprioceptive afferents of the trigeminal and facial motor nuclei in the mallard (Anas platyrhynchos L.). Arends JJ; Dubbeldam JL J Comp Neurol; 1982 Aug; 209(3):313-29. PubMed ID: 7130459 [TBL] [Abstract][Full Text] [Related]
32. Afferent and efferent connections of cerebellar lobe C1 of the mormyrid fish Gnathonemus petersi: an HRP study. Meek J; Nieuwenhuys R; Elsevier D J Comp Neurol; 1986 Mar; 245(3):319-41. PubMed ID: 3958249 [TBL] [Abstract][Full Text] [Related]
33. Spinal neurons reaching the lateral reticular nucleus as studied in the rat by retrograde transport of horseradish peroxidase. Menétrey D; Roudier F; Besson JM J Comp Neurol; 1983 Nov; 220(4):439-52. PubMed ID: 6643737 [TBL] [Abstract][Full Text] [Related]
34. Descending connections from the brainstem to the spinal cord in the electric fish Eigenmannia. Quantitative description based on retrograde horseradish peroxidase and fluorescent-dye transport. Behrend K; Donicht M Brain Behav Evol; 1990; 35(4):227-39. PubMed ID: 2379082 [TBL] [Abstract][Full Text] [Related]
35. An HRP study in the cat of brainstem projections to the spinal cord, with particular reference to sacral afferents. Suzuki K Arch Ital Biol; 1985 Jul; 123(3):155-70. PubMed ID: 4083964 [TBL] [Abstract][Full Text] [Related]
36. Descending projection neurons to the spinal cord of the goldfish, Carassius auratus. Prasada Rao PD; Jadhao AG; Sharma SC J Comp Neurol; 1987 Nov; 265(1):96-108. PubMed ID: 2826554 [TBL] [Abstract][Full Text] [Related]
37. Distinguishing rat brainstem reticulospinal nuclei by their neuronal morphology. II. Pontine and mesencephalic nuclei. Newman DB J Hirnforsch; 1985; 26(4):385-418. PubMed ID: 4067279 [TBL] [Abstract][Full Text] [Related]
38. A well defined spinocerebellar system in the weakly electric teleost fish Gnathonemus petersii. A tracing and immuno-histochemical study. Szabo T; Libouban S; Denizot JP Arch Ital Biol; 1990 Jul; 128(2-4):229-47. PubMed ID: 1702609 [TBL] [Abstract][Full Text] [Related]
39. Anatomical studies on the nucleus reticularis tegmenti pontis in the pigmented rat. II. Subcortical afferents demonstrated by the retrograde transport of horseradish peroxidase. Torigoe Y; Blanks RH; Precht W J Comp Neurol; 1986 Jan; 243(1):88-105. PubMed ID: 3512625 [TBL] [Abstract][Full Text] [Related]
40. Cytoarchitecture, neuronal morphology, and some efferent connections of the interstitial nucleus of Cajal (INC) in the cat. Zuk A; Gwyn DG; Rutherford JG J Comp Neurol; 1982 Dec; 212(3):278-92. PubMed ID: 6818254 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]