These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 6527542)

  • 41. In vitro metabolism of cannabinol in rat, mouse, rabbit, guinea pig, hamster, gerbil and cat.
    Brown NK; Harvey DJ
    Eur J Drug Metab Pharmacokinet; 1990; 15(3):253-8. PubMed ID: 2253656
    [TBL] [Abstract][Full Text] [Related]  

  • 42. 7 alpha-hydroxylation of 27-hydroxycholesterol in human liver microsomes.
    Björkhem I; Nyberg B; Einarsson K
    Biochim Biophys Acta; 1992 Sep; 1128(1):73-6. PubMed ID: 1390879
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Studies on the metabolism of C19 steroids in rat liver. 5. 18-Hydroxylation of 17 beta-hydroxy-C19 steroids in rat liver microsomes.
    Gustafsson JA; Lisboa BP
    Steroids; 1969 Dec; 14(6):659-74. PubMed ID: 5361341
    [No Abstract]   [Full Text] [Related]  

  • 44. Oxidative metabolism of BDE-47, BDE-99, and HBCDs by cat liver microsomes: Implications of cats as sentinel species to monitor human exposure to environmental pollutants.
    Zheng X; Erratico C; Luo X; Mai B; Covaci A
    Chemosphere; 2016 May; 151():30-6. PubMed ID: 26923239
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In vitro and in vivo metabolism of desogestrel in several species.
    Verhoeven CH; Krebbers SF; Wagenaars GN; Vos RM
    Drug Metab Dispos; 1998 Sep; 26(9):927-36. PubMed ID: 9733673
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Dioxygenated metabolites of cannabidiol formed by rat liver.
    Martin B; Agurell S; Nordqvist M; Lindgren JE
    J Pharm Pharmacol; 1976 Aug; 28(8):603-8. PubMed ID: 11306
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The role of CYP2C in the in vitro bioactivation of the contraceptive steroid desogestrel.
    Gentile DM; Verhoeven CH; Shimada T; Back DJ
    J Pharmacol Exp Ther; 1998 Dec; 287(3):975-82. PubMed ID: 9864282
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bioavailability of Lynestrenol.
    Shrimanker K; Akpoviroro J; Fotherby K; Watson J
    Arzneimittelforschung; 1980; 30(3):500-2. PubMed ID: 7387763
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Utility of isolated hepatocytes and radio-HPLC-MSn for the analysis of the metabolic fate of 19-nortestosterone laurate in cattle.
    Coldham NG; Biancotto G; Montesissa C; Howells LC; Sauer MJ
    Analyst; 1998 Dec; 123(12):2589-94. PubMed ID: 10435305
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Metabolism of prostaglandins, prostaglandin analogs and thromboxane B2 by lung and liver microsomes from pregnant rabbits.
    Powell WS
    Biochim Biophys Acta; 1979 Dec; 575(3):335-49. PubMed ID: 518891
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Metabolism of carbosulfan. I. Species differences in the in vitro biotransformation by mammalian hepatic microsomes including human.
    Abass K; Reponen P; Mattila S; Pelkonen O
    Chem Biol Interact; 2009 Oct; 181(2):210-9. PubMed ID: 19523935
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dehydroxylation of a 7 beta-hydroxy-C27 plant sterol in rat liver.
    Boberg KM; Stabursvik A; Björkhem I; Stokke O
    Biochim Biophys Acta; 1989 Aug; 1004(3):321-6. PubMed ID: 2758026
    [TBL] [Abstract][Full Text] [Related]  

  • 53. 15-Hydroxylation of 5 beta-cholestan-3 alpha-ol and 24 alpha-ethyl-5 beta-cholestan-3 alpha-ol in rat liver supernatants (18,000 X g).
    Aringer L
    J Biol Chem; 1982 Nov; 257(22):13720-5. PubMed ID: 7142175
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Factors responsible for the formation of different N-alkylated porphyrins in rat liver microsomal systems exposed to norethindrone. The role of 3 alpha-hydroxysteroid dehydrogenase.
    White IN; Blakey DC; Green ML; Jarman M; Schulten HR
    Biochem J; 1986 Jun; 236(2):379-87. PubMed ID: 3463301
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The biotransformation of alpha-(2, 4, 6-trimethylphenyl)ethylamine by rabbit liver preparations.
    Kammerer RC
    Life Sci; 1980 Dec; 27(23):2175-81. PubMed ID: 7207012
    [No Abstract]   [Full Text] [Related]  

  • 56. The metabolism of chlorpromazine by developing rabbit liver.
    Bhatnagar SP
    Can J Physiol Pharmacol; 1971 Jul; 49(7):649-56. PubMed ID: 5168887
    [No Abstract]   [Full Text] [Related]  

  • 57. Microsomal metabolism of the carcinogen, N-2-fluorenylacetamide, by the mammary gland and liver of female rats. I. Ring- and N-hydroxylations of N-2-fluorenylacetamide.
    Malejka-Giganti D; Decker RW; Ritter CL; Polovina MR
    Carcinogenesis; 1985 Jan; 6(1):95-103. PubMed ID: 3967341
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evidence for p-hydroxylation of N-ethyl-N-methylaniline.
    Gorrod JW; Patterson LH
    Xenobiotica; 1980; 10(7-8):603-10. PubMed ID: 7445526
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Characterization of the cytochrome P450 enzymes involved in the metabolism of a new cardioprotective agent KR-33028.
    Kim H; Yoon YJ; Kim H; Kang S; Cheon HG; Yoo SE; Shin JG; Liu KH
    Toxicol Lett; 2006 Oct; 166(2):105-14. PubMed ID: 16857327
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Metabolism of amiodarone (part I): identification of a new hydroxylated metabolite of amiodarone.
    Ha HR; Bigler L; Binder M; Kozlik P; Stieger B; Hesse M; Altorfer HR; Follath F
    Drug Metab Dispos; 2001 Feb; 29(2):152-8. PubMed ID: 11159805
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.