These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 6527542)
61. Biotransformation of 1,8-cineole by human liver microsomes. Miyazawa M; Shindo M Nat Prod Lett; 2001; 15(1):49-53. PubMed ID: 11547423 [TBL] [Abstract][Full Text] [Related]
62. Structural identification of SAR-943 metabolites generated by human liver microsomes in vitro using mass spectrometry in combination with analysis of fragmentation patterns. Strom T; Shokati T; Klawitter J; Klawitter J; Hoffman K; Schiebel HM; Christians U J Mass Spectrom; 2011 Jul; 46(7):615-24. PubMed ID: 21671437 [TBL] [Abstract][Full Text] [Related]
63. Species differences in the hepatic formation of green pigments following the administration of norethindrone. White IN; Boobis AR; Davies DS Biochem Pharmacol; 1984 Feb; 33(3):459-64. PubMed ID: 6422948 [TBL] [Abstract][Full Text] [Related]
64. Identification of metabolites of hexazinone by mass spectrometry. Reiser RW; Belasco IJ; Rhodes RC Biomed Mass Spectrom; 1983 Nov; 10(11):581-5. PubMed ID: 6661503 [TBL] [Abstract][Full Text] [Related]
65. Cortisol metabolism by human liver in vitro--IV. Metabolism of 9 alpha-fluorocortisol by human liver microsomes and cytosol. Abel SM; Back DJ; Maggs JL; Park BK J Steroid Biochem Mol Biol; 1993 Dec; 46(6):833-9. PubMed ID: 8274419 [TBL] [Abstract][Full Text] [Related]
66. The in vitro metabolism of 2-nitroso-1-phenylpropane dimer by fortified 9000g supernatants from rabbit liver. Beckett AH; Jones GR J Pharm Pharmacol; 1977 Jun; 29(6):350-4. PubMed ID: 18571 [TBL] [Abstract][Full Text] [Related]
67. The identification and analysis of the metabolic products of mephentermine. Beckett AH; Bélanger PM J Pharm Pharmacol; 1975 Dec; 27(12):928-36. PubMed ID: 2665 [TBL] [Abstract][Full Text] [Related]
68. Study of in-vitro metabolism of selected antibiotic drugs in human liver microsomes by liquid chromatography coupled with tandem mass spectrometry. Szultka-Mlynska M; Buszewski B Anal Bioanal Chem; 2016 Nov; 408(29):8273-8287. PubMed ID: 27704178 [TBL] [Abstract][Full Text] [Related]
69. Identification of metabolites of fosinopril produced by human and rat liver microsomes with liquid chromatography-mass spectrometry. Uutela P; Monto M; Iso-Mustajärvi I; Madetoja M; Yliperttula M; Ketola RA Eur J Pharm Sci; 2014 Mar; 53():86-94. PubMed ID: 24365260 [TBL] [Abstract][Full Text] [Related]
70. Biotransformation of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) by human liver microsomes: identification of cytochrome P450 2B6 as the major enzyme involved. Erratico CA; Szeitz A; Bandiera SM Chem Res Toxicol; 2013 May; 26(5):721-31. PubMed ID: 23537005 [TBL] [Abstract][Full Text] [Related]
71. Metabolism in vitro of N-methylamphetamine with rat liver homogenates. Coutts RT; Kovach SH Biochem Pharmacol; 1977 Jun; 26(11):1043-9. PubMed ID: 18150 [No Abstract] [Full Text] [Related]
72. Microsomal metabolism of cyclohexene. Hydroxylation in the allylic position. Leibman KC; Ortiz E Drug Metab Dispos; 1978; 6(4):375-8. PubMed ID: 28916 [TBL] [Abstract][Full Text] [Related]
73. Stereoselective metabolism of nicotine and tobacco-specific N-nitrosamines to 4-hydroxy-4-(3-pyridyl)butanoic acid in rats. Trushin N; Hecht SS Chem Res Toxicol; 1999 Feb; 12(2):164-71. PubMed ID: 10027794 [TBL] [Abstract][Full Text] [Related]
74. Diphenidine, a new psychoactive substance: metabolic fate elucidated with rat urine and human liver preparations and detectability in urine using GC-MS, LC-MS Wink CS; Michely JA; Jacobsen-Bauer A; Zapp J; Maurer HH Drug Test Anal; 2016 Oct; 8(10):1005-1014. PubMed ID: 26811026 [TBL] [Abstract][Full Text] [Related]
75. Characterization of in vitro metabolites of TM-2, a potential antitumor drug, in rat, dog and human liver microsomes using liquid chromatography/tandem mass spectrometry. Men L; Zhao Y; Lin H; Yang M; Liu H; Tang X; Yu Z Rapid Commun Mass Spectrom; 2014 Oct; 28(20):2162-70. PubMed ID: 25178720 [TBL] [Abstract][Full Text] [Related]
76. Subterminal hydroxylation of lauric acid by microsomes from a marine fish. Lemaire P; Lafaurie M; Weissbart D; Durst F; Pflieger P; Mioskowski C; Salaün JP Lipids; 1992 Mar; 27(3):187-91. PubMed ID: 1522763 [TBL] [Abstract][Full Text] [Related]
77. The N-hydroxylation of phentermine (2-methyl-1-phenylisopropylamine) by rabbit liver microsomes. Cho AK; Lindeke B; Hodshon BJ Res Commun Chem Pathol Pharmacol; 1972 Nov; 4(3):519-28. PubMed ID: 4638590 [No Abstract] [Full Text] [Related]
78. Aliphatic esters of 6,6-difluoro-17 -hydroxy-17-ethynyl-4-estren-3-one (6,6-difluoronorethindrone) and (+)-6,6-difluoro-13 -ethyl-17 -hydroxy-17-ethynyl-4-gonen-3-one ((+)-6,6-difluoronorgestrel). Johnson AL Steroids; 1972 Sep; 20(3):263-7. PubMed ID: 5073576 [No Abstract] [Full Text] [Related]
79. Hydroxylation and formation of electrophilic metabolites of tienilic acid and its isomer by human liver microsomes. Catalysis by a cytochrome P450 IIC different from that responsible for mephenytoin hydroxylation. Dansette PM; Amar C; Valadon P; Pons C; Beaune PH; Mansuy D Biochem Pharmacol; 1991 Feb; 41(4):553-60. PubMed ID: 1997003 [TBL] [Abstract][Full Text] [Related]
80. Evidence for the involvement of human liver microsomes CYP1A2 in the mono-hydroxylation of daidzein. Peng WX; Wang LS; Li HD; Abd El-Aty AM; Chen GL; Zhou HH Clin Chim Acta; 2003 Aug; 334(1-2):77-85. PubMed ID: 12867277 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]