BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 6527549)

  • 1. Subunit interactions in enzyme transition states--antagonism between substrate binding and reaction rate.
    Ricard J; Noat G
    J Theor Biol; 1984 Dec; 111(4):737-53. PubMed ID: 6527549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subunit coupling and kinetic co-operativity of polymeric enzymes. Amplification, attenuation and inversion effects.
    Ricard J; Noat G
    J Theor Biol; 1985 Dec; 117(4):633-49. PubMed ID: 4094457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subunit interactions in enzyme catalysis. Kinetic models for one-substrate polymeric enzymes.
    Ricard J; Mouttet C; Nari J
    Eur J Biochem; 1974 Feb; 41(3):479-97. PubMed ID: 4817559
    [No Abstract]   [Full Text] [Related]  

  • 4. Thermodynamics of information transfer between subunits in oligomeric enzymes and kinetic cooperativity. 1. Thermodynamics of subunit interactions, partition functions and enzyme reaction rate.
    Ricard J; Giudici-Orticoni MT; Buc J
    Eur J Biochem; 1990 Dec; 194(2):463-73. PubMed ID: 2269278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic efficiency, kinetic co-operativity of oligomeric enzymes and evolution.
    Ricard J; Noat G
    J Theor Biol; 1986 Dec; 123(4):431-51. PubMed ID: 3657187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolutionary dynamics of enzymes.
    Demetrius L
    Protein Eng; 1995 Aug; 8(8):791-800. PubMed ID: 8637848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mathematical modelling of dynamics and control in metabolic networks. II. Simple dimeric enzymes.
    Palsson BO; Jamier R; Lightfoot EN
    J Theor Biol; 1984 Nov; 111(2):303-21. PubMed ID: 6513573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymes as biosensors. 1. Enzyme memory and sensing chemical signals.
    Ricard J; Buc J
    Eur J Biochem; 1988 Sep; 176(1):103-9. PubMed ID: 3416866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of the theory of enzyme subunit interactions to ATP-hydrolyzing enzymes. The case of Na,K-ATPase.
    Plesner IW
    Biophys J; 1987 Jan; 51(1):69-78. PubMed ID: 3026505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substrate ground state binding energy concentration is realized as transition state stabilization in physiological enzyme catalysis.
    Britt BM
    J Biochem Mol Biol; 2004 Sep; 37(5):533-7. PubMed ID: 15479615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isomerization of the free enzyme versus induced fit: effects of steps involving induced fit that bypass enzyme isomerization on flux ratios and countertransport.
    Britton HG
    Biochem J; 1997 Jan; 321 ( Pt 1)(Pt 1):187-99. PubMed ID: 9003418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative interpretations of double mutations of enzymes.
    Mildvan AS; Weber DJ; Kuliopulos A
    Arch Biochem Biophys; 1992 May; 294(2):327-40. PubMed ID: 1567189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microscopic diffusion-reaction coupling in steady-state enzyme kinetics.
    Berg OG; Ehrenberg M
    Biophys Chem; 1983 Jan; 17(1):13-28. PubMed ID: 6824760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The determination of thermodynamic allosteric parameters of an enzyme undergoing steady-state turnover.
    Reinhart GD
    Arch Biochem Biophys; 1983 Jul; 224(1):389-401. PubMed ID: 6870263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rates of reactions catalysed by a dimeric enzyme. Effects of the reaction scheme and the kinetic parameters on co-operativity.
    Ishikawa H; Ogino H; Oshida H
    Biochem J; 1991 Nov; 280 ( Pt 1)(Pt 1):131-7. PubMed ID: 1741741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mathematical modelling of dynamics and control in metabolic networks. V. Static bifurcations in single biochemical control loops.
    Palsson BO; Lightfoot EN
    J Theor Biol; 1985 Mar; 113(2):279-98. PubMed ID: 3999779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic strategy of citrate synthase: subunit interactions revealed as a consequence of a single amino acid change in the oxaloacetate binding site.
    Kurz LC; Shah S; Frieden C; Nakra T; Stein RE; Drysdale GR; Evans CT; Srere PA
    Biochemistry; 1995 Oct; 34(41):13278-88. PubMed ID: 7577912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonequilibrium linear behavior of biological systems. Existence of enzyme-mediated multidimensional inflection points.
    Rothschild KJ; Ellias SA; Essig A; Stanley HE
    Biophys J; 1980 May; 30(2):209-30. PubMed ID: 7260273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The modulation of enzyme reaction rates within multi-enzyme complexes. 2. Information transfer within a chloroplast multi-enzyme complex containing ribulose bisphosphate carboxylase-oxygenase.
    Gontero B; Giudici-Orticoni MT; Ricard J
    Eur J Biochem; 1994 Dec; 226(3):999-1006. PubMed ID: 7813491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linear relation between rate and thermodynamic force in enzyme-catalyzed reactions.
    Van der Meer R; Westeroff HV; Van Dam K
    Biochim Biophys Acta; 1980 Jul; 591(2):488-93. PubMed ID: 7397133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.