These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 6527777)
1. Normal postnatal development of retinogeniculate axons and terminals and identification of inappropriately-located transient synapses: electron microscope studies of horseradish peroxidase-labelled retinal axons in the hamster. Campbell G; So KF; Lieberman AR Neuroscience; 1984 Nov; 13(3):743-59. PubMed ID: 6527777 [TBL] [Abstract][Full Text] [Related]
2. Synaptic organization of the dorsal lateral geniculate nucleus in the adult hamster. An electron microscope study using degeneration and horseradish peroxidase tracing techniques. So KF; Campbell G; Lieberman AR Anat Embryol (Berl); 1985; 171(2):223-34. PubMed ID: 3985371 [TBL] [Abstract][Full Text] [Related]
3. The normal and abnormal postnatal development of retinogeniculate projections in golden hamsters: an anterograde horseradish peroxidase tracing study. So KF; Woo HH; Jen LS Brain Res; 1984 Feb; 314(2):191-205. PubMed ID: 6704748 [TBL] [Abstract][Full Text] [Related]
4. Identification of synapses formed by the aberrant, uncrossed retinogeniculate projection in the hamster after neonatal monocular enucleation. Campbell G; So KF; Lieberman AR Brain Res; 1985 Jul; 353(1):137-40. PubMed ID: 4027677 [TBL] [Abstract][Full Text] [Related]
5. Transient expression of synaptic zinc during development of uncrossed retinogeniculate projections. Land PW; Shamalla-Hannah L J Comp Neurol; 2001 May; 433(4):515-25. PubMed ID: 11304715 [TBL] [Abstract][Full Text] [Related]
6. Development of the mammalian retinogeniculate pathway: target finding, transient synapses and binocular segregation. So KF; Campbell G; Lieberman AR J Exp Biol; 1990 Oct; 153():85-104. PubMed ID: 2280230 [TBL] [Abstract][Full Text] [Related]
7. The development of the retinogeniculate pathways in normal and albino ferrets. Cucchiaro J; Guillery RW Proc R Soc Lond B Biol Sci; 1984 Dec; 223(1231):141-64. PubMed ID: 6151658 [TBL] [Abstract][Full Text] [Related]
8. The dorsal lateral geniculate nucleus of the normal ferret and its postnatal development. Linden DC; Guillery RW; Cucchiaro J J Comp Neurol; 1981 Dec; 203(2):189-211. PubMed ID: 7309920 [TBL] [Abstract][Full Text] [Related]
9. The normal organization of the lateral posterior nucleus of the golden hamster. Crain BJ; Hall WC J Comp Neurol; 1980 Sep; 193(2):351-70. PubMed ID: 7440772 [TBL] [Abstract][Full Text] [Related]
10. Synaptic reorganization in the dorsal lateral geniculate nucleus following damage to visual cortex in newborn or adult cats. Kalil RE; Behan M J Comp Neurol; 1987 Mar; 257(2):216-36. PubMed ID: 3571526 [TBL] [Abstract][Full Text] [Related]
11. Orderly anomalous retinal projections to the medial geniculate, ventrobasal, and lateral posterior nuclei of the hamster. Frost DO J Comp Neurol; 1981 Dec; 203(2):227-56. PubMed ID: 7309922 [TBL] [Abstract][Full Text] [Related]
12. Developmental shift of synaptic vesicle protein 2 from axons to terminals in the primary visual projection of the hamster. Confaloni A; Lyckman AW; Moya KL Neuroscience; 1997 Apr; 77(4):1225-36. PubMed ID: 9130800 [TBL] [Abstract][Full Text] [Related]
13. Development of terminal arbors of retino-geniculate axons in the kitten--II. Electron microscopical observations. Mason CA Neuroscience; 1982 Mar; 7(3):561-82. PubMed ID: 7070667 [TBL] [Abstract][Full Text] [Related]
14. Prenatal and postnatal development of retinogeniculate and retinocollicular projections in the mouse. Godement P; Salaün J; Imbert M J Comp Neurol; 1984 Dec; 230(4):552-75. PubMed ID: 6520251 [TBL] [Abstract][Full Text] [Related]
15. Inhibition of axoplasmic transport in the developing visual system of the rat-III. Electron microscopy and Golgi studies of retino-fugal synapses and post-synaptic neurons in the dorsal lateral geniculate nucleus. Matthews MA; Narayanan CH; Narayanan Y; Siegenthaler-Matthews DJ Neuroscience; 1982 Feb; 7(2):405-22. PubMed ID: 6176909 [TBL] [Abstract][Full Text] [Related]
16. Synapses formed by identified retinogeniculate axons during the segregation of eye input. Campbell G; Shatz CJ J Neurosci; 1992 May; 12(5):1847-58. PubMed ID: 1578274 [TBL] [Abstract][Full Text] [Related]
17. Anterograde tracer study on the nucleus geniculatus dorsalis and its internal synaptic structure in chick brain. Tömböl T; Eyre MD; Zayats N; Németh A Cells Tissues Organs; 2004; 178(4):216-30. PubMed ID: 15812149 [TBL] [Abstract][Full Text] [Related]
18. Retinal synapses of the cat medial interlaminar nucleus and ventral lateral geniculate nucleus differ in size and synaptic organization. Mize RR; Horner LH J Comp Neurol; 1984 Apr; 224(4):579-90. PubMed ID: 6725632 [TBL] [Abstract][Full Text] [Related]
19. Synaptic organization of anomalous retinal projections to the somatosensory and auditory thalamus: target-controlled morphogenesis of axon terminals and synaptic glomeruli. Campbell G; Frost DO J Comp Neurol; 1988 Jun; 272(3):383-408. PubMed ID: 2843579 [TBL] [Abstract][Full Text] [Related]
20. Pattern formation by retinal afferents in the ferret lateral geniculate nucleus: developmental segregation and the role of N-methyl-D-aspartate receptors. Hahm JO; Cramer KS; Sur M J Comp Neurol; 1999 Aug; 411(2):327-45. PubMed ID: 10404257 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]