These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 6529562)

  • 1. Subcellular distribution of bile acids, bile salts, and taurocholate binding sites in rat liver.
    Simion FA; Fleischer B; Fleischer S
    Biochemistry; 1984 Dec; 23(26):6459-66. PubMed ID: 6529562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two distinct mechanisms for taurocholate uptake in subcellular fractions from rat liver.
    Simion FA; Fleischer B; Fleischer S
    J Biol Chem; 1984 Sep; 259(17):10814-22. PubMed ID: 6469982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hepatocellular transport of bile acids. Evidence for distinct subcellular localizations of electrogenic and ATP-dependent taurocholate transport in rat hepatocytes.
    Kast C; Stieger B; Winterhalter KH; Meier PJ
    J Biol Chem; 1994 Feb; 269(7):5179-86. PubMed ID: 8106499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of Na+-dependent bile acid uptake by albumin: direct demonstration in rat basolateral liver plasma membrane vesicles.
    Blitzer BL; Lyons L
    Am J Physiol; 1985 Jul; 249(1 Pt 1):G34-8. PubMed ID: 3925791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of taurocholate binding sites in ileal plasma membrane.
    Simon FR; Sutherland J; Sutherland E
    Am J Physiol; 1990 Sep; 259(3 Pt 1):G394-401. PubMed ID: 2399983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive regulation of hepatic bile salt transport. Effect of prolonged bile salt depletion in the rat.
    Accatino L; Hono J; Maldonado M; Icarte MA; Persico R
    J Hepatol; 1988 Oct; 7(2):215-23. PubMed ID: 3192923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Premicellar taurocholate avidly binds ferrous (Fe++) iron: a potential physiologic role for bile salts in iron absorption.
    Sanyal AJ; Hirsch JI; Moore EW
    J Lab Clin Med; 1990 Jul; 116(1):76-86. PubMed ID: 2376701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amino acids are potent inhibitors of bile acid uptake by liver plasma membrane vesicles isolated from suckling rats.
    Bucuvalas JC; Goodrich AL; Blitzer BL; Suchy FJ
    Pediatr Res; 1985 Dec; 19(12):1298-304. PubMed ID: 4080448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterizing mechanisms of hepatic bile acid transport utilizing isolated membrane vesicles.
    Boyer JL; Meier PJ
    Methods Enzymol; 1990; 192():517-33. PubMed ID: 2074806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and characterization of a bile acid receptor in isolated liver surface membranes.
    Accatino L; Simon FR
    J Clin Invest; 1976 Feb; 57(2):496-508. PubMed ID: 3520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bile acid transport into hepatocyte smooth endoplasmic reticulum vesicles is mediated by microsomal epoxide hydrolase, a membrane protein exhibiting two distinct topological orientations.
    Alves C; von Dippe P; Amoui M; Levy D
    J Biol Chem; 1993 Sep; 268(27):20148-55. PubMed ID: 8376374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immunoperoxidase localization of bile salts in rat liver cells. Evidence for a role of the Golgi apparatus in bile salt transport.
    Lamri Y; Roda A; Dumont M; Feldmann G; Erlinger S
    J Clin Invest; 1988 Oct; 82(4):1173-82. PubMed ID: 2459158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Partitioning of bile acids into subcellular organelles and the in vivo distribution of bile acids in rat liver.
    Strange RC; Chapman BT; Johnston JD; Nimmo IA; Percy-Robb IW
    Biochim Biophys Acta; 1979 Jun; 573(3):535-45. PubMed ID: 465518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sodium ion-coupled uptake of taurocholate by rat-liver plasma membrane vesicles.
    Ruifrok PG; Meijer DK
    Liver; 1982 Mar; 2(1):28-34. PubMed ID: 7176836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monensin action on the Golgi complex in perfused rat liver: evidence against bile salt vesicular transport.
    Reynier MO; Abou Hashieh I; Crotte C; Carbuccia N; Richard B; Gérolami A
    Gastroenterology; 1992 Jun; 102(6):2024-32. PubMed ID: 1587420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct determination of the driving forces for taurocholate uptake into rat liver plasma membrane vesicles.
    Duffy MC; Blitzer BL; Boyer JL
    J Clin Invest; 1983 Oct; 72(4):1470-81. PubMed ID: 6630516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multispecificity of Na+-dependent taurocholate uptake in basolateral (sinusoidal) rat liver plasma membrane vesicles.
    Zimmerli B; Valantinas J; Meier PJ
    J Pharmacol Exp Ther; 1989 Jul; 250(1):301-8. PubMed ID: 2746502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transhepatic transport of taurocholic acid in normal and mutant analbuminemic rats.
    Inoue M; Morino Y; Nagase S
    Biochim Biophys Acta; 1985 Feb; 833(2):211-6. PubMed ID: 3970952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bile acid binding proteins in hepatocellular membranes of newborn and adult rats. Identification of transport proteins with azidobenzamidotauro[14C]cholate ([14C]ABATC).
    Ziegler K; Frimmer M; Müllner S; Fasold H
    Biochim Biophys Acta; 1989 Apr; 980(2):161-8. PubMed ID: 2930783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uptake of bile acids by perfused rat liver.
    Reichen J; Paumgartner G
    Am J Physiol; 1976 Sep; 231(3):734-42. PubMed ID: 788526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.