These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 6530430)

  • 21. Solid-phase polyethylene glycol conjugation using hydrophobic interaction chromatography.
    Niu J; Zhu Y; Xie Y; Song L; Shi L; Lan J; Liu B; Li X; Huang Z
    J Chromatogr A; 2014 Jan; 1327():66-72. PubMed ID: 24411087
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Studies on the separation method with multiple injection of proteins].
    Chang J; Guo L
    Se Pu; 1997 Mar; 15(2):141-3. PubMed ID: 15739404
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Separation of PEGylated variants of ribonuclease A and apo-α-lactalbumin via reversed phase chromatography.
    Cisneros-Ruiz M; Mayolo-Deloisa K; Rito-Palomares M; Przybycien TM
    J Chromatogr A; 2014 Sep; 1360():209-16. PubMed ID: 25130086
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydrophobic interaction chromatography in alkaline pH.
    Narhi LO; Kita Y; Arakawa T
    Anal Biochem; 1989 Nov; 182(2):266-70. PubMed ID: 2610344
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessment of the resolving power of hydrophobic interaction chromatography for intact protein analysis on non-porous butyl polymethacrylate phases.
    Ewonde RE; De Vos J; Broeckhoven K; Eβer D; Eeltink S
    J Chromatogr A; 2021 Aug; 1651():462310. PubMed ID: 34166860
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of protein separations based on hydrophobic interaction chromatography using polyethylene terephthalate capillary-channeled polymer (C-CP) fiber phases.
    Wang L; Marcus RK
    J Chromatogr A; 2019 Jan; 1585():161-171. PubMed ID: 30502918
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effective protein separation by coupling hydrophobic interaction and reverse phase chromatography for top-down proteomics.
    Xiu L; Valeja SG; Alpert AJ; Jin S; Ge Y
    Anal Chem; 2014 Aug; 86(15):7899-906. PubMed ID: 24968279
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimization of hydrophobic interaction chromatography using a mathematical model of elution curves of a protein mixture.
    Lienqueo ME; Shene C; Asenjo J
    J Mol Recognit; 2009; 22(2):110-20. PubMed ID: 18979460
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Two variables dominating the retention of intact proteins under gradient elution with simultaneous ultrafast high-resolution separation by hydrophobic interaction chromatography.
    Geng X; Jia X; Liu P; Wang F; Yang X
    Analyst; 2015 Oct; 140(19):6692-704. PubMed ID: 26332744
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Contributions to reversed-phase column selectivity. I. Steric interaction.
    Carr PW; Dolan JW; Neue UD; Snyder LR
    J Chromatogr A; 2011 Apr; 1218(13):1724-42. PubMed ID: 21349525
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Separation of peptides on a polystyrene resin column.
    Sasagawa T; Ericsson LH; Teller DC; Titani K; Walsh KA
    J Chromatogr; 1984 Apr; 307(1):29-38. PubMed ID: 6327748
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Solubility and binding properties of PEGylated lysozyme derivatives with increasing molecular weight on hydrophobic-interaction chromatographic resins.
    Müller E; Josic D; Schröder T; Moosmann A
    J Chromatogr A; 2010 Jul; 1217(28):4696-703. PubMed ID: 20570270
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of reversed-phase column materials for high-performance liquid chromatography of proteins.
    van der Zee R; Hoekzema T; Welling-Wester S; Welling GW
    J Chromatogr; 1986 Oct; 368(2):283-9. PubMed ID: 3782369
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Contributions to reversed-phase column selectivity: III. Column hydrogen-bond basicity.
    Carr PW; Dolan JW; Dorsey JG; Snyder LR; Kirkland JJ
    J Chromatogr A; 2015 May; 1395():57-64. PubMed ID: 25890437
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Solvent modulation of column chromatography.
    Arakawa T; Kita Y; Ejima D; Gagnon P
    Protein Pept Lett; 2008; 15(6):544-55. PubMed ID: 18680448
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-throughput protein precipitation and hydrophobic interaction chromatography: salt effects and thermodynamic interrelation.
    Nfor BK; Hylkema NN; Wiedhaup KR; Verhaert PD; van der Wielen LA; Ottens M
    J Chromatogr A; 2011 Dec; 1218(49):8958-73. PubMed ID: 21868020
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-performance hydrophobic-interaction chromatography on ether-bonded phases. Chromatographic characteristics and gradient optimization.
    Miller NT; Karger BL
    J Chromatogr; 1985 Jun; 326():45-61. PubMed ID: 4030950
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Salt-independent hydrophobic displacement chromatography for antibody purification using cyclodextrin as supermolecular displacer.
    Ren J; Yao P; Chen J; Jia L
    J Chromatogr A; 2014 Nov; 1369():98-104. PubMed ID: 25441076
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On-line coupling of hydrophobic interaction column with reverse phase column -charged aerosol detector/mass spectrometer to characterize polysorbates in therapeutic protein formulations.
    He Y; Brown P; Bailey Piatchek MR; Carroll JA; Jones MT
    J Chromatogr A; 2019 Feb; 1586():72-81. PubMed ID: 30551943
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Monolithic stationary phases with incorporated fumed silica nanoparticles. Part II. Polymethacrylate-based monolithic column with "covalently" incorporated modified octadecyl fumed silica nanoparticles for reversed-phase chromatography.
    Aydoğan C; El Rassi Z
    J Chromatogr A; 2016 May; 1445():62-7. PubMed ID: 27059396
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.