These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 6530617)

  • 61. Dependence of acetylcholine receptor channel conversion on muscle activity at denervated neonatal rat endplates.
    Brenner HR
    Neurosci Lett; 1988 May; 88(2):161-6. PubMed ID: 2454435
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Antibody to acetylcholine receptor increases degradation of junctional and extrajunctional receptors in adult muscle.
    Reiness CG; Weinberg CB; Hall ZW
    Nature; 1978 Jul; 274(5666):68-70. PubMed ID: 661996
    [No Abstract]   [Full Text] [Related]  

  • 63. Turnover of acetylcholine receptors at the endplate revisited: novel insights into nerve-dependent behavior.
    Strack S; Khan MM; Wild F; Rall A; Rudolf R
    J Muscle Res Cell Motil; 2015 Dec; 36(6):517-24. PubMed ID: 26276166
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Interaction of myasthenic immunoglobulins and cholinergic agonists on acetylcholine receptors of rat myotubes.
    Ashizawa T; Elias SB; Appel SH
    Ann Neurol; 1982 Jan; 11(1):22-7. PubMed ID: 6277235
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Endplate contributions to the safety factor for neuromuscular transmission.
    Ruff RL
    Muscle Nerve; 2011 Dec; 44(6):854-61. PubMed ID: 22102453
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Neurogenic calcitonin gene-related peptide: a neurotrophic factor in the maintenance of acetylcholinesterase molecular forms in adult skeletal muscles.
    Fernandez HL; Ross GS; Nadelhaft I
    Brain Res; 1999 Oct; 844(1-2):83-97. PubMed ID: 10536264
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Topological differences along mammalian motor nerve terminals for spontaneous and alpha-bungarotoxin-induced sprouting.
    Tomas J; Lanuza MA; Santafé M; Fenoll-Brunet MR; Garcia N
    Histol Histopathol; 2000 Jan; 15(1):43-52. PubMed ID: 10668194
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Histochemical staining of the acetylcholine receptor, acetylcholinesterase, and the axon terminal.
    Bjornskov EK; Norris FH; Mower-Kuby J
    Muscle Nerve; 1982 Feb; 5(2):140-2. PubMed ID: 7070395
    [No Abstract]   [Full Text] [Related]  

  • 69. Acetylcholine receptors of human skeletal muscle: a species difference detected by snake neurotoxins.
    Ishikawa Y; Kano M; Tamiya N; Shimada Y
    Brain Res; 1985 Oct; 346(1):82-8. PubMed ID: 4052774
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A nerve stump dependent appearance of junctional and perijunctional acetylcholine receptors in organ culture.
    Olek AJ; Robbins N
    Neuroscience; 1981; 6(9):1771-82. PubMed ID: 6272160
    [No Abstract]   [Full Text] [Related]  

  • 71. Sequence of age-associated changes to the mouse neuromuscular junction and the protective effects of voluntary exercise.
    Cheng A; Morsch M; Murata Y; Ghazanfari N; Reddel SW; Phillips WD
    PLoS One; 2013; 8(7):e67970. PubMed ID: 23844140
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Denervation increases the degradation rate of acetylcholine receptors at end-plates in vivo and in vitro.
    Bevan S; Steinbach JH
    J Physiol; 1983 Mar; 336():159-77. PubMed ID: 6875905
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Acetylcholinesterase and acetylcholine receptor histochemistry on end plate regions, myotendinous junctions, and sarcolemma in the axial musculature of three teleost fish species.
    Mos W; Maslam S; van Raamsdonk W; Kilarski W; de Jager S
    Acta Histochem; 1983; 72(1):39-53. PubMed ID: 6410655
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Morphological features of collateral innervation and supernumerary innervation in the skeletal muscles of presenile rats.
    Kawabuchi M; Zhou C; Nakamura K; Hirata K
    Ann Anat; 1995 May; 177(3):251-65. PubMed ID: 7598222
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Localization of calcitonin gene-related peptide and its receptors in a striated muscle.
    Popper P; Micevych PE
    Brain Res; 1989 Sep; 496(1-2):180-6. PubMed ID: 2553200
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Quantitation of junctional and extrajunctional acetylcholine receptors by electron microscope autoradiography after 125I-alpha-bungarotoxin binding at mouse neuromuscular junctions.
    Fertuck HC; Salpeter MM
    J Cell Biol; 1976 Apr; 69(1):144-58. PubMed ID: 1254640
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Postsynaptic transmission block can cause terminal sprouting of a motor nerve.
    Holland RL; Brown MC
    Science; 1980 Feb; 207(4431):649-51. PubMed ID: 6243417
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Pathfinding and synapse formation in a zebrafish mutant lacking functional acetylcholine receptors.
    Westerfield M; Liu DW; Kimmel CB; Walker C
    Neuron; 1990 Jun; 4(6):867-74. PubMed ID: 2361010
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The levator ani of the female rat: a suitable model for studying the effects of testosterone on the development of mammalian muscles.
    Tobin C; Joubert Y
    Biol Struct Morphog; 1988; 1(1):28-33. PubMed ID: 3401520
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Innervation of developing intrafusal muscle fibers in the rat.
    Kucera J; Walro JM; Reichler J
    Am J Anat; 1988 Dec; 183(4):344-58. PubMed ID: 3218622
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.