These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 6530914)

  • 41. [Echo-planar FLAIR imaging in patients with brain disorders: comparative studies with turbo-SE T2WI and turbo-FLAIR].
    Matoba M; Tonami H; Yokota H; Ayabe K; Okimura T; Yamamoto I
    Nihon Igaku Hoshasen Gakkai Zasshi; 1998 Mar; 58(4):129-36. PubMed ID: 9584455
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A method for optimization of pulse sequences in NMR-imaging.
    Bielke G
    Med Prog Technol; 1983-1984; 10(3):171-6. PubMed ID: 6680767
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Optimal pulse sequences for magnetic resonance imaging-computing accurate t1, t2, and proton density images.
    Iwaoka H; Hirata T; Matsuura H
    IEEE Trans Med Imaging; 1987; 6(4):360-9. PubMed ID: 18244046
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The applied research of MRI with ASSET-EPI-FLAIR combined with 3D TOF MRA sequences in the assessment of patients with acute cerebral infarction.
    Lin Z; Guo Z; Qiu L; Yang W; Lin M
    Acta Radiol; 2016 Dec; 57(12):1515-1523. PubMed ID: 26853685
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Optimization of multiple spin-echo sequences for 3D polymer gel dosimetry.
    De Deene Y; Baldock C
    Phys Med Biol; 2002 Sep; 47(17):3117-41. PubMed ID: 12361214
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Experimental intracranial septic infarction: magnetic resonance enhancement.
    Grossman RI; Joseph PM; Wolf G; Biery D; McGrath J; Kundel HL; Fishman JE; Zimmerman RA; Goldberg HI; Bilaniuk LT
    Radiology; 1985 Jun; 155(3):649-53. PubMed ID: 4001365
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Plain imaging of meningioma in NMR tomography--retrospective contrast optimization by image synthesis].
    Just M; Higer HP; Grigat M; Voth D; Bockenheimer S; Pfannenstiel P
    Digitale Bilddiagn; 1986 Dec; 6(4):156-60. PubMed ID: 3028696
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Initial clinical evaluation of a whole body nuclear magnetic resonance (NMR) tomograph.
    Young IR; Bailes DR; Burl M; Collins AG; Smith DT; McDonnell MJ; Orr JS; Banks LM; Bydder GM; Greenspan RH; Steiner RE
    J Comput Assist Tomogr; 1982 Feb; 6(1):1-18. PubMed ID: 7068989
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enhancement and demyelination of the intraorbital optic nerve. Fat suppression magnetic resonance imaging.
    Guy J; Mao J; Bidgood WD; Mancuso A; Quisling RG
    Ophthalmology; 1992 May; 99(5):713-9. PubMed ID: 1594216
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Proton (1H) nuclear magnetic resonance (NMR) imaging in stroke syndromes.
    Buonanno FS; Kistler JP; DeWitt LD; Pykett IL; Brady TJ
    Neurol Clin; 1983 Feb; 1(1):243-62. PubMed ID: 6095008
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Liver metastases: detection by phase-contrast MR imaging.
    Stark DD; Wittenberg J; Middleton MS; Ferrucci JT
    Radiology; 1986 Feb; 158(2):327-32. PubMed ID: 3941859
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A general method for optimizing tissue discrimination in magnetic resonance imaging.
    Fox RA; Henson PW
    Med Phys; 1986; 13(5):635-43. PubMed ID: 3784989
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Quantification of contrast in clinical MR brain imaging at high magnetic field.
    Wehrli FW; Breger RK; MacFall JR; Daniels DL; Haughton VM; Charles HC; Williams AL
    Invest Radiol; 1985 Jul; 20(4):360-9. PubMed ID: 4044176
    [TBL] [Abstract][Full Text] [Related]  

  • 54. MRI of acute cerebral infarction: a comparison of FLAIR and T2-weighted fast spin-echo imaging.
    Noguchi K; Ogawa T; Inugami A; Fujita H; Hatazawa J; Shimosegawa E; Okudera T; Uemura K; Seto H
    Neuroradiology; 1997 Jun; 39(6):406-10. PubMed ID: 9225318
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Central pontine myelinolysis: demonstration by nuclear magnetic resonance.
    DeWitt LD; Buonanno FS; Kistler JP; Zeffiro T; DeLaPaz RL; Brady TJ; Rosen BR; Pykett IL
    Neurology; 1984 May; 34(5):570-6. PubMed ID: 6538649
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Interpretation of magnetic resonance images making use of in vitro examinations of spinal tissue.
    Kamman RL; Go KG; Vencken LM; Berendsen HJ
    Spine (Phila Pa 1976); 1987 Apr; 12(3):257-63. PubMed ID: 3035729
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cooperative T1 and T2 effects on contrast using a new driven inversion spin-echo (DISE) MRI pulse sequence.
    Conturo TE; Kessler RM; Beth AH
    Magn Reson Med; 1990 Sep; 15(3):397-419. PubMed ID: 2233220
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nuclear magnetic resonance (NMR) imaging in diseases of the central nervous system: initial results.
    Huk W; Heindel W
    Radiat Med; 1983; 1(2):105-11. PubMed ID: 6679902
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Depiction of reperfused myocardial infarction using contrast-enhanced spin echo and gradient echo magnetic resonance imaging.
    Geschwind JF; Saeed M; Wendland MF; Higgins CB
    Invest Radiol; 1998 Jul; 33(7):386-92. PubMed ID: 9659590
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [FLAIR images of brain diseases].
    Segawa F; Kishibayashi J; Kamada K; Sunohara N; Kinoshita M
    No To Shinkei; 1994 Jun; 46(6):531-8. PubMed ID: 8068434
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.