These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 6532242)

  • 1. Detection and measurement by high-performance liquid chromatography of malondialdehyde crosslinks in DNA.
    Summerfield FW; Tappel AL
    Anal Biochem; 1984 Dec; 143(2):265-71. PubMed ID: 6532242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination by fluorescence quenching of the environment of DNA crosslinks made by malondialdehyde.
    Summerfield FW; Tappel AL
    Biochim Biophys Acta; 1983 Jun; 740(2):185-9. PubMed ID: 6860669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of malondialdehyde-DNA crosslinks by fluorescence and incorporation of tritium.
    Summerfield FW; Tappel AL
    Anal Biochem; 1981 Feb; 111(1):77-82. PubMed ID: 7235243
    [No Abstract]   [Full Text] [Related]  

  • 4. Analysis of DNA-protein crosslinking activity of malondialdehyde in vitro.
    Voitkun V; Zhitkovich A
    Mutat Res; 1999 Mar; 424(1-2):97-106. PubMed ID: 10064853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of malondialdehyde by ion-pairing high-performance liquid chromatography.
    Bull AW; Marnett LJ
    Anal Biochem; 1985 Aug; 149(1):284-90. PubMed ID: 4073483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Malondialdehyde-containing proteins and their relationship to vitamin E.
    Manwaring JD; Csallany AS
    Lipids; 1988 Jul; 23(7):651-5. PubMed ID: 3419278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of malondialdehyde with chemical derivatization into the pyrimidine compound and HPLC.
    Kishida E; Oribe M; Mochizuki K; Kojo S; Iguchi H
    Biochim Biophys Acta; 1990 Jul; 1045(2):187-8. PubMed ID: 2378911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High performance liquid chromatographic determination of malondialdehyde in vegetable oils.
    Hirayama T; Yamada N; Nohara M; Fukui S
    J Assoc Off Anal Chem; 1983 Mar; 66(2):304-8. PubMed ID: 6860411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reinvestigation of the modification of nucleic acids with malonaldehyde.
    Kikugawa K; Taguchi K; Maruyama T
    Chem Pharm Bull (Tokyo); 1987 Aug; 35(8):3364-9. PubMed ID: 2448050
    [No Abstract]   [Full Text] [Related]  

  • 10. High-performance liquid chromatography with electrochemical detection for determination of the major malondialdehyde-guanine adduct.
    Goda Y; Marnett LJ
    Chem Res Toxicol; 1991; 4(5):520-4. PubMed ID: 1793799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemically induced binding of the hepatocarcinogen N-monomethyl-4-aminoazobenzene to nucleic acids in vitro.
    Lin JK; Fok KF
    Cancer Res; 1973 Mar; 33(3):529-35. PubMed ID: 4734735
    [No Abstract]   [Full Text] [Related]  

  • 12. Quantitative analysis of malondialdehyde-guanine adducts in genomic DNA samples by liquid chromatography/tandem mass spectrometry.
    Yates SA; Dempster NM; Murphy MF; Moore SA
    Rapid Commun Mass Spectrom; 2017 May; 31(9):762-770. PubMed ID: 28231608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate measurement of psoralen-crosslinked DNA: direct biochemical measurements and indirect measurement by hybridization.
    Matsuo N; Ross PM
    Arch Biochem Biophys; 1988 Nov; 266(2):351-68. PubMed ID: 3142359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Free malonaldehyde determination in tissues by high-performance liquid chromatography.
    Csallany AS; Der Guan M; Manwaring JD; Addis PB
    Anal Biochem; 1984 Nov; 142(2):277-83. PubMed ID: 6528969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of malondialdehyde-modified bovine serum albumin and mouse peritoneal macrophages.
    Beppu M; Fukata Y; Kikugawa K
    Chem Pharm Bull (Tokyo); 1988 Nov; 36(11):4519-26. PubMed ID: 3246020
    [No Abstract]   [Full Text] [Related]  

  • 16. Melting of crosslinked DNA: VI. Comparison of influence of interstrand crosslinks and other chemical modifications formed by antitumor compounds on DNA stability.
    Fridman AS; Galyuk EN; Vorob'ev VI; Skvortsov AN; Lando DY
    J Biomol Struct Dyn; 2008 Oct; 26(2):175-85. PubMed ID: 18597539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative reversed-phase high-performance liquid chromatography of major and modified nucleosides in DNA.
    Gehrke CW; McCune RA; Gama-Sosa MA; Ehrlich M; Kuo KC
    J Chromatogr; 1984 Sep; 301(1):199-219. PubMed ID: 6209294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantification of DNA interstrand crosslinks induced by ACNU in NIH/3T3 and L1210 cells using high-performance liquid chromatography/electrospray ionization tandem mass spectrometry.
    Li L; Zhao L; Zhong R
    Rapid Commun Mass Spectrom; 2014 Mar; 28(5):439-47. PubMed ID: 24497281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydroxyl-radical-induced iron-catalysed degradation of 2-deoxyribose. Quantitative determination of malondialdehyde.
    Cheeseman KH; Beavis A; Esterbauer H
    Biochem J; 1988 Jun; 252(3):649-53. PubMed ID: 3421915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of malonaldehyde by high-performance liquid chromatography.
    Esterbauer H; Lang J; Zadravec S; Slater TF
    Methods Enzymol; 1984; 105():319-28. PubMed ID: 6727671
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.