These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

57 related articles for article (PubMed ID: 6533365)

  • 1. [Studies of lower leg electrical impedance for gait analysis].
    Yamamoto Y; Yamamoto T; Okamoto T; Jikuya K; Hiragami F; Akashi K
    Iyodenshi To Seitai Kogaku; 1984 Oct; 22(6):433-8. PubMed ID: 6533365
    [No Abstract]   [Full Text] [Related]  

  • 2. [Measurement of the electrical impedance of the human body: resistance segments of the lower limb].
    Fogari R; Bernardi L; Mocchi F; Usberti M
    Boll Soc Ital Biol Sper; 1976 Nov; 52(22):1852-5. PubMed ID: 1027450
    [No Abstract]   [Full Text] [Related]  

  • 3. Effect of electrode location on EMG signal envelope in leg muscles during gait.
    Campanini I; Merlo A; Degola P; Merletti R; Vezzosi G; Farina D
    J Electromyogr Kinesiol; 2007 Aug; 17(4):515-26. PubMed ID: 16889982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of electrical bio-impedance and its applications.
    Yamamoto Y; Yamamoto T
    Med Prog Technol; 1987; 12(3-4):171-83. PubMed ID: 3627028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence of interaction between human lumbosacral and cervical neural networks during gait.
    Eke-Okoro ST
    Electromyogr Clin Neurophysiol; 1994 Sep; 34(6):345-9. PubMed ID: 8001475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new approach for detection of leg movement using segmental electrical impedance changes.
    Song CG; Seo JH; Kim KS; Youn DY; Kim DW
    J Med Eng Technol; 2005; 29(1):42-6. PubMed ID: 15764382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Frequency characteristics of the electrical impedance of legs (author's transl)].
    Sakamoto K; Higashiizumi T; Kanai H
    Iyodenshi To Seitai Kogaku; 1979 Aug; 17(4):264-70. PubMed ID: 522296
    [No Abstract]   [Full Text] [Related]  

  • 8. Optimum electrode configuration for detection of leg movement using bio-impedance.
    Song CG; Kim SC; Nam KC; Kim DW
    Physiol Meas; 2005 Apr; 26(2):S59-68. PubMed ID: 15798247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lower extremity electromyographic analysis of running gait.
    Schwab GH; Moynes DR; Jobe FW; Perry J
    Clin Orthop Relat Res; 1983 Jun; (176):166-70. PubMed ID: 6851320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Age-related differences in Tai Chi gait kinematics and leg muscle electromyography: a pilot study.
    Wu G
    Arch Phys Med Rehabil; 2008 Feb; 89(2):351-7. PubMed ID: 18226662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The functional importance of the iliotibial tract].
    Huggler AH; Jacob HA
    Z Orthop Ihre Grenzgeb; 1983; 121(1):44-6. PubMed ID: 6845828
    [No Abstract]   [Full Text] [Related]  

  • 12. A three-dimensional biomechanical evaluation of quadriceps and hamstrings function using electrical stimulation.
    Hunter BV; Thelen DG; Dhaher YY
    IEEE Trans Neural Syst Rehabil Eng; 2009 Apr; 17(2):167-75. PubMed ID: 19193516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive effects of spaceflight as revealed by short-term partial weight suspension.
    Jackson DK; Newman DJ
    Aviat Space Environ Med; 2000 Sep; 71(9 Suppl):A151-60. PubMed ID: 10993329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An exploration of the function of the triceps surae during normal gait using functional electrical stimulation.
    Stewart C; Postans N; Schwartz MH; Rozumalski A; Roberts A
    Gait Posture; 2007 Oct; 26(4):482-8. PubMed ID: 17223346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of trunk inclination on lower limb joint and lumbar moments in able men during the stance phase of gait.
    Leteneur S; Gillet C; Sadeghi H; Allard P; Barbier F
    Clin Biomech (Bristol, Avon); 2009 Feb; 24(2):190-5. PubMed ID: 19091448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Importance of transitory electrical resistance in pulse electroplethysmography].
    Litoshko IA; Naumenko AI; Rafilov AM
    Fiziol Zh SSSR Im I M Sechenova; 1973 Dec; 59(12):1905-7. PubMed ID: 4790824
    [No Abstract]   [Full Text] [Related]  

  • 17. Control of the lower leg during walking: a versatile model of the foot.
    Stefanovic F; Popovic DB
    IEEE Trans Neural Syst Rehabil Eng; 2009 Feb; 17(1):63-9. PubMed ID: 19211325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tibialis posterior EMG activity during barefoot walking in people with neutral foot posture.
    Murley GS; Buldt AK; Trump PJ; Wickham JB
    J Electromyogr Kinesiol; 2009 Apr; 19(2):e69-77. PubMed ID: 18053742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new approach to detecting asymmetries in gait.
    Shorter KA; Polk JD; Rosengren KS; Hsiao-Wecksler ET
    Clin Biomech (Bristol, Avon); 2008 May; 23(4):459-67. PubMed ID: 18242805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of the impedance of a thin hydrogel electrode on sensation during functional electrical stimulation.
    Sha N; Kenney LP; Heller BW; Barker AT; Howard D; Wang W
    Med Eng Phys; 2008 Jul; 30(6):739-46. PubMed ID: 17942361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.