These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
63 related articles for article (PubMed ID: 6534037)
1. Circadian variation in the ambulation-increasing effect of apomorphine after repeated administration in mice. Kuribara H; Tadokoro S Yakubutsu Seishin Kodo; 1984 Nov; 4(3):231-6. PubMed ID: 6534037 [TBL] [Abstract][Full Text] [Related]
2. Chronopharmacological study on morphine-induced increase in ambulatory activity in mice and methamphetamine sensitivity in morphine-experienced mice. Kuribara H; Tadokoro S Yakubutsu Seishin Kodo; 1985 Sep; 5(3):279-86. PubMed ID: 4072438 [TBL] [Abstract][Full Text] [Related]
3. Augmentation of sensitivity to ambulation-increasing effect of apomorphine induced by repeated administration in mice. Kuribara H; Tadokoro S Yakubutsu Seishin Kodo; 1984 Sep; 4(2):181-90. PubMed ID: 6543079 [TBL] [Abstract][Full Text] [Related]
4. [Characteristics of reverse tolerance to ambulation-increasing effect of methylphenidate after repeated administration in mice]. Hirabayashi M; Okada S; Mesaki T; Tadokoro S Yakubutsu Seishin Kodo; 1983 Dec; 3(3):117-26. PubMed ID: 6678529 [TBL] [Abstract][Full Text] [Related]
5. [Development of reverse tolerance to the ambulation-increasing effect of ephedrine after repeated administration in mice]. Hirabayashi M; Okada S Yakubutsu Seishin Kodo; 1985 Sep; 5(3):231-41. PubMed ID: 4072434 [TBL] [Abstract][Full Text] [Related]
6. [Effects of repeated administration of bromocriptine on ambulatory activity in mice, and changes in methamphetamine sensitivity in bromocriptine-experienced mice]. Asami T; Kuribara H; Tadokoro S Yakubutsu Seishin Kodo; 1986 Sep; 6(3):309-17. PubMed ID: 3811623 [TBL] [Abstract][Full Text] [Related]
7. Effects of repeated administration of buprenorphine on ambulatory activity in mice. Kuribara H; Katsuya T; Asahi T; Tadokoro S Yakubutsu Seishin Kodo; 1991 Apr; 11(2):123-7. PubMed ID: 1927058 [TBL] [Abstract][Full Text] [Related]
8. Circadian variation in susceptibility to methamphetamine after repeated administration in mice. Kuribara H; Tadokoro S Pharmacol Biochem Behav; 1984 Feb; 20(2):247-50. PubMed ID: 6718451 [TBL] [Abstract][Full Text] [Related]
9. Circadian variation in methamphetamine- and apomorphine-induced increase in ambulatory activity in mice. Kuribara H; Tadokoro S Pharmacol Biochem Behav; 1982 Dec; 17(6):1251-6. PubMed ID: 7163356 [TBL] [Abstract][Full Text] [Related]
10. Interaction between caffeine and methamphetamine by means of ambulatory activity in mice. Fujii W; Kuribara H; Tadokoro S Yakubutsu Seishin Kodo; 1989 Jun; 9(2):225-31. PubMed ID: 2816095 [TBL] [Abstract][Full Text] [Related]
11. [Behavioral study on an antitussive and expectorant, and of its constituents. II. Effects on ambulatory activity after repeated administration, and a modification of the methamphetamine sensitivity in mice]. Kuribara H; Tadokoro S Arukoru Kenkyuto Yakubutsu Ison; 1989 Oct; 24(5):430-8. PubMed ID: 2624571 [TBL] [Abstract][Full Text] [Related]
12. Sensitization to ambulation-increasing effects of cocaine after repeated administration in mice--roles of dose and interval of administration as well as experimental environments. Hirabayashi M; Tadokoro S Arukoru Kenkyuto Yakubutsu Ison; 1992 Feb; 27(1):91-102. PubMed ID: 1596246 [TBL] [Abstract][Full Text] [Related]
13. [Modification of stereotypy-producing and ambulation-increasing effects following repeated administration of methamphetamine in rats]. Kifune A; Tadokoro S Yakubutsu Seishin Kodo; 1991 Jun; 11(3):207-14. PubMed ID: 1771975 [TBL] [Abstract][Full Text] [Related]
14. Haloperidol and restraint differently inhibit the induction of sensitization to the ambulation-increasing effect of methamphetamine in mice. Kuribara H Nihon Shinkei Seishin Yakurigaku Zasshi; 1995 Jun; 15(3):253-63. PubMed ID: 7584719 [TBL] [Abstract][Full Text] [Related]
15. Sensorimotor gating effects produced by repeated dopamine agonists in a paradigm favoring environmental conditioning. Feifel D; Priebe K; Johnstone-Miller E; Morgan CJ Psychopharmacology (Berl); 2002 Jul; 162(2):138-46. PubMed ID: 12110991 [TBL] [Abstract][Full Text] [Related]
16. [Development and characteristics of reverse tolerance to repeatedly administered morphine in mice manifested by enhanced motor activities]. Iizuka M; Hirabayashi M Nihon Yakurigaku Zasshi; 1983 Oct; 82(4):293-301. PubMed ID: 6662419 [TBL] [Abstract][Full Text] [Related]
17. Dosing time-dependent tolerance of catalepsy by repetitive administration of haloperidol in mice. Viyoch J; Ohdo S; Yukawa E; Higuchi S J Pharmacol Exp Ther; 2001 Sep; 298(3):964-9. PubMed ID: 11504791 [TBL] [Abstract][Full Text] [Related]
18. Blockade by ginseng total saponin of the development of methamphetamine reverse tolerance and dopamine receptor supersensitivity in mice. Kim HS; Kang JG; Rheu HM; Cho DH; Oh KW Planta Med; 1995 Feb; 61(1):22-5. PubMed ID: 7700985 [TBL] [Abstract][Full Text] [Related]
19. [Behavioral effects of amantadine on ambulatory activity and drinking in mice and on continuous and discrete avoidance responses in rats]. Kuribara H; Tadokoro S Nihon Yakurigaku Zasshi; 1984 Feb; 83(2):147-58. PubMed ID: 6745805 [TBL] [Abstract][Full Text] [Related]
20. Modifications of ambulation-increasing effect of morphine and buprenorphine following repeated administration in mice. Asahi T; Kuribara H; Tadokoro S Arukoru Kenkyuto Yakubutsu Ison; 1991 Dec; 26(6):522-30. PubMed ID: 1785960 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]