These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 6534171)

  • 1. Possibility of diacetyl and related compounds as the 4-carbon compound necessary for the formation of riboflavin in Ashbya gossypii.
    Nakajima K; Mitsuda H
    Acta Vitaminol Enzymol; 1984; 6(4):271-82. PubMed ID: 6534171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of various metabolites (sugars, carboxylic acids and alcohols) on riboflavin formation in non-growing cells of Ashbya gossypii.
    Mitsuda H; Nakajima K; Ikeda Y
    J Nutr Sci Vitaminol (Tokyo); 1978; 24(2):91-103. PubMed ID: 27596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on the 4-carbon compound needed for the formation of the O-xylene ring of riboflavin.
    Nakajima K
    Acta Vitaminol Enzymol; 1985; 7(1-2):25-37. PubMed ID: 4041123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oversynthesis of diacetyl and acetoin in a riboflavin deficient mutant of yeast.
    Nakajima K; Saito A
    Int J Vitam Nutr Res; 1987; 57(3):279-83. PubMed ID: 3316092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A detoxication route for acetaldehyde: metabolism of diacetyl, acetoin, and 2,3-butanediol in liver homogenate and perfused liver of rats.
    Otsuka M; Mine T; Ohuchi K; Ohmori S
    J Biochem; 1996 Feb; 119(2):246-51. PubMed ID: 8882713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosynthesis of riboflavin. Incorporation of 13C-labeled precursors into the xylene ring.
    Bacher A; Le Van Q; Keller PJ; Floss HG
    J Biol Chem; 1983 Nov; 258(22):13431-7. PubMed ID: 6417129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on the intermediates in the biosynthetic pathway of riboflavin. I. Identification of a green fluorescent compound, compound G1, accumulated in non-growing cells of Eremothecium ashbyii by the addition of dimeric diacetyl.
    Mitsuda H; Nakajima K; Yamada Y
    J Nutr Sci Vitaminol (Tokyo); 1977; 23(4):305-18. PubMed ID: 562396
    [No Abstract]   [Full Text] [Related]  

  • 8. Laboratory-scale production of acetoin plus diacetyl by Enterobacter cloacae ATCC 27613.
    Gupta KG; Yadav NK; Dhawan S
    Biotechnol Bioeng; 1978 Dec; 20(12):1895-901. PubMed ID: 728550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering of 2,3-butanediol dehydrogenase to reduce acetoin formation by glycerol-overproducing, low-alcohol Saccharomyces cerevisiae.
    Ehsani M; Fernández MR; Biosca JA; Julien A; Dequin S
    Appl Environ Microbiol; 2009 May; 75(10):3196-205. PubMed ID: 19329666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Examination of the structure of an unknown green fluorescent compound, compound G2, accumulated in non-growing cells of Eremothecium ashbyii by the addition of dimeric diacetyl.
    Mitsuda H; Nakajima K; Yamada Y
    J Nutr Sci Vitaminol (Tokyo); 1977; 23(5):413-22. PubMed ID: 564400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Possibility of 2,4,5-triamino-6-hydroxypyrimidine as an intermediate in the pathway of riboflavin biosynthesis.
    Nakajima K; Yamada Y; Mitsuda H
    Acta Vitaminol Enzymol; 1985; 7(1-2):19-24. PubMed ID: 4041122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blood and urinary levels of ethanol, acetaldehyde, and C4 compounds such as diacetyl, acetoin, and 2,3-butanediol in normal male students after ethanol ingestion.
    Otsuka M; Harada N; Itabashi T; Ohmori S
    Alcohol; 1999 Feb; 17(2):119-24. PubMed ID: 10064379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diacetyl, acetoin, and acetaldehyde production by mixed-species lactic starter cultures.
    Walsh B; Cogan TM
    Appl Microbiol; 1973 Nov; 26(5):820-5. PubMed ID: 4762402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of a chiral acetoinic compound from diacetyl by Escherichia coli expressing meso-2,3-butanediol dehydrogenase.
    Ui S; Mimura A; Ohkuma M; Kudo T
    Lett Appl Microbiol; 1999 Jun; 28(6):457-60. PubMed ID: 10389264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation of 4-ribitylamino-5-amino-2,6-dihydroxypyrimidine from a high flavinogenic mold Eremothecium ashbyii1.
    Mitsuda H; Nakajima K
    J Nutr Sci Vitaminol (Tokyo); 1976; 22(4):307-12. PubMed ID: 1034673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diacetyl: a new substrate in the overall reaction of the pyruvate dehydrogenase complex.
    Sümegi B; Gyócsi L; Alkonyi
    Biochim Biophys Acta; 1982 Jul; 705(1):70-5. PubMed ID: 7115733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of valine, leucine & isoleucine on acetoin plus diacetyl formation by bacteria & yeasts.
    Yadav NK; Jain AK; Gupta KG
    Indian J Exp Biol; 1977 Oct; 15(10):945-7. PubMed ID: 606660
    [No Abstract]   [Full Text] [Related]  

  • 18. Physiological and biochemical role of the butanediol pathway in Aerobacter (Enterobacter) aerogenes.
    Johansen L; Bryn K; Stormer FC
    J Bacteriol; 1975 Sep; 123(3):1124-30. PubMed ID: 239921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reutilization of by-product for riboflavin formation in the riboflavin synthetase reaction.
    Mitsuda H; Nadamoto T; Nakajima K
    J Nutr Sci Vitaminol (Tokyo); 1976; 22(1):67-70. PubMed ID: 986426
    [No Abstract]   [Full Text] [Related]  

  • 20. Diacetyl and acetoin production by Lactobacillus casei.
    Branen AL; Keenan TW
    Appl Microbiol; 1971 Oct; 22(4):517-21. PubMed ID: 4943268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.