These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 6535351)

  • 1. Insufflated red cells protect lungs from hyperoxic damage: role of red cell glutathione in scavenging toxic O2 radicals.
    van Asbeck S; Hoidal J; Schwartz B; Vercellotti GM; Moldow CF; Jacob HS
    Trans Assoc Am Physicians; 1984; 97():365-8. PubMed ID: 6535351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protection against lethal hyperoxia by tracheal insufflation of erythrocytes: role of red cell glutathione.
    van Asbeck BS; Hoidal J; Vercellotti GM; Schwartz BA; Moldow CF; Jacob HS
    Science; 1985 Feb; 227(4688):756-9. PubMed ID: 2982213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial glutathione and oxidative stress: implications for pulmonary oxygen toxicity in premature infants.
    O'Donovan DJ; Fernandes CJ
    Mol Genet Metab; 2000; 71(1-2):352-8. PubMed ID: 11001827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Propylthiouracil treatment decreases the susceptibility to oxygen radical-induced lung damage in newborn rats exposed to prolonged hyperoxia.
    Rodriguez-Pierce M; Sosenko IR; Whitney P; Frank L
    Pediatr Res; 1994 May; 35(5):530-5. PubMed ID: 8065833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endotoxin treatment increases lung mitochondrial scavenging of extramitochondrial superoxide in hyperoxia-exposed rats.
    Guidot DM
    Arch Biochem Biophys; 1996 Feb; 326(2):266-70. PubMed ID: 8611033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Free oxygen radiacals and kidney diseases--part I].
    Sakac V; Sakac M
    Med Pregl; 2000; 53(9-10):463-74. PubMed ID: 11320727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Free radicals and respiratory pathology].
    Housset B
    C R Seances Soc Biol Fil; 1994; 188(4):321-33. PubMed ID: 7736256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overexpression of manganese superoxide dismutase by N-acetylcysteine in hyperoxic lung injury.
    Nagata K; Iwasaki Y; Yamada T; Yuba T; Kono K; Hosogi S; Ohsugi S; Kuwahara H; Marunaka Y
    Respir Med; 2007 Apr; 101(4):800-7. PubMed ID: 17010595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proposed mechanism for neonatal rat tolerance to normobaric hyperoxia.
    Stevens JB; Autor AP
    Fed Proc; 1980 Nov; 39(13):3138-43. PubMed ID: 6253331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of hyperoxia on the ultrastructural pathology of alveolar epithelium in relation to glutathione peroxidase, lactate dehydrogenase activities, and free radical production in rats, Rattus norvigicus.
    Bin-Jaliah I; Dallak M; Haffor AS
    Ultrastruct Pathol; 2009; 33(3):112-22. PubMed ID: 19479651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of oxidative reactions of hemoglobin in the design of blood substitutes: role of the ascorbate-glutathione antioxidant system.
    Simoni J; Villanueva-Meyer J; Simoni G; Moeller JF; Wesson DE
    Artif Organs; 2009 Feb; 33(2):115-26. PubMed ID: 19178455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Possible significance of free oxygen radicals for reperfusion injury].
    Becker BF; Massoudy P; Permanetter B; Raschke P; Zahler S
    Z Kardiol; 1993; 82 Suppl 5():49-58. PubMed ID: 8154162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disruption of the Ah receptor gene alters the susceptibility of mice to oxygen-mediated regulation of pulmonary and hepatic cytochromes P4501A expression and exacerbates hyperoxic lung injury.
    Jiang W; Welty SE; Couroucli XI; Barrios R; Kondraganti SR; Muthiah K; Yu L; Avery SE; Moorthy B
    J Pharmacol Exp Ther; 2004 Aug; 310(2):512-9. PubMed ID: 15123765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hypochlorite- and hypobromite-mediated radical formation and its role in cell lysis.
    Hawkins CL; Brown BE; Davies MJ
    Arch Biochem Biophys; 2001 Nov; 395(2):137-45. PubMed ID: 11697850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A critical role for thiol, but not ATP, depletion in 95% O2-mediated injury of preterm pneumocytes in vitro.
    Christie NA; Slutsky AS; Freeman BA; Tanswell AK
    Arch Biochem Biophys; 1994 Aug; 313(1):131-8. PubMed ID: 8053673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Albumin exchange and polymorphonuclear vascular transit in hyperoxic pulmonary oedema in awake rats].
    Bureau M; Brun-Pascaud M; Colas-Linhart N; Vivet P; Pocidalo JJ
    Bull Eur Physiopathol Respir; 1983; 19(3):279-84. PubMed ID: 6882953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-dependent course of hyperbaric oxygen-induced oxidative effects in rat lung and erythrocytes.
    Ay H; Topal T; Uysal B; Ozler M; Oter S; Korkmaz A; Dündar K
    Clin Exp Pharmacol Physiol; 2007 Aug; 34(8):787-91. PubMed ID: 17600558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phenol and catechol induce prehemolytic and hemolytic changes in human erythrocytes.
    Bukowska B; Kowalska S
    Toxicol Lett; 2004 Aug; 152(1):73-84. PubMed ID: 15294349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of nitric oxide and metalloproteinases in the pathogenesis of hyperoxia-induced lung injury in newborn rats.
    Radomski A; Sawicki G; Olson DM; Radomski MW
    Br J Pharmacol; 1998 Dec; 125(7):1455-62. PubMed ID: 9884073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidant injury to the alveolar epithelium: biochemical and pharmacologic studies.
    Freeman BA; Panus PC; Matalon S; Buckley BJ; Baker RR
    Res Rep Health Eff Inst; 1993 Jan; (54):1-30; discussion 31-9. PubMed ID: 8439407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.