These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 6535488)

  • 1. Plasma technology in war hight production of toxic gas.
    Prouveur G
    Arch Belg; 1984; Suppl():38-44. PubMed ID: 6535488
    [No Abstract]   [Full Text] [Related]  

  • 2. [Application of NeedlEx to the analysis of chemical weapons--1st report: chloropicrin].
    Ishiwata T; Ishisawa F
    Chudoku Kenkyu; 2006 Jan; 19(1):61-2. PubMed ID: 16491884
    [No Abstract]   [Full Text] [Related]  

  • 3. Array sensing using optical methods for detection of chemical and biological hazards.
    Diehl KL; Anslyn EV
    Chem Soc Rev; 2013 Nov; 42(22):8596-611. PubMed ID: 23999658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Technological advancements for the detection of and protection against biological and chemical warfare agents.
    Eubanks LM; Dickerson TJ; Janda KD
    Chem Soc Rev; 2007 Mar; 36(3):458-70. PubMed ID: 17325785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Technology challenges in responding to biological or chemical attacks in the civilian sector.
    Fitch JP; Raber E; Imbro DR
    Science; 2003 Nov; 302(5649):1350-4. PubMed ID: 14631029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of organoarsenic warfare agents in sediment samples from Skagerrak by gas chromatography-mass spectrometry.
    Tørnes JA; Opstad AM; Johnsen BA
    Sci Total Environ; 2006 Mar; 356(1-3):235-46. PubMed ID: 15993928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the toxicological investigations in man in Southeast Asia, Afghanistan and Iran, concerning gas warfare.
    Heyndrickx A; Heyndrickx B
    Arch Belg; 1984; Suppl():426-34. PubMed ID: 6535492
    [No Abstract]   [Full Text] [Related]  

  • 8. Determination of trace level chemical warfare agents in water and slurry samples using hollow fibre-protected liquid-phase microextraction followed by gas chromatography-mass spectrometry.
    Lee HS; Basheer C; Lee HK
    J Chromatogr A; 2006 Aug; 1124(1-2):91-6. PubMed ID: 16769078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Demonstration plasma gasification/vitrification system for effective hazardous waste treatment.
    Moustakas K; Fatta D; Malamis S; Haralambous K; Loizidou M
    J Hazard Mater; 2005 Aug; 123(1-3):120-6. PubMed ID: 15878635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Poisoning by diphenylarsinic acid derived from chemical warfare agents in Kamisu, Japan].
    Ishii K; Tamaoka A; Iwasaki N; Otsuka F
    Chudoku Kenkyu; 2004 Apr; 17(2):125-31. PubMed ID: 15266846
    [No Abstract]   [Full Text] [Related]  

  • 11. Extractive membrane bioreactors: a new process technology for detoxifying chemical industry wastewaters.
    Livingston AG
    J Chem Technol Biotechnol; 1994 Jun; 60(2):117-24. PubMed ID: 7764961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of single drop microextraction for analysis of chemical warfare agents and related compounds in water by gas chromatography/mass spectrometry.
    Palit M; Pardasani D; Gupta AK; Dubey DK
    Anal Chem; 2005 Jan; 77(2):711-7. PubMed ID: 15649077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of snow samples contaminated with chemical warfare agents.
    Johnsen BA; Blanch JH
    Arch Belg; 1984; Suppl():22-30. PubMed ID: 6535469
    [No Abstract]   [Full Text] [Related]  

  • 14. Analysis of biological samples for chemical warfare agents.
    Barr JR
    J Anal Toxicol; 2008; 32(1):1. PubMed ID: 18269785
    [No Abstract]   [Full Text] [Related]  

  • 15. Collaborative studies on warfare chemicals by small laboratories.
    Dutt MC
    Arch Belg; 1984; Suppl():81-7. PubMed ID: 6535501
    [No Abstract]   [Full Text] [Related]  

  • 16. Biological monitoring of human exposure to chemical warfare agents.
    Barr JR
    J Anal Toxicol; 2004; 28(5):305. PubMed ID: 15307221
    [No Abstract]   [Full Text] [Related]  

  • 17. Determination of degradation products of chemical warfare agents in water using hollow fibre-protected liquid-phase microextraction with in-situ derivatisation followed by gas chromatography-mass spectrometry.
    Lee HS; Sng MT; Basheer C; Lee HK
    J Chromatogr A; 2007 Apr; 1148(1):8-15. PubMed ID: 17376465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retrospective detection of exposure to nerve agents: analysis of phosphofluoridates originating from fluoride-induced reactivation of phosphylated BuChE.
    van der Schans MJ; Polhuijs M; van Dijk C; Degenhardt CE; Pleijsier K; Langenberg JP; Benschop HP
    Arch Toxicol; 2004 Sep; 78(9):508-24. PubMed ID: 15170525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mass spectrometry in identification of ecotoxicants including chemical and biological warfare agents.
    Lebedev AT
    Toxicol Appl Pharmacol; 2005 Sep; 207(2 Suppl):451-8. PubMed ID: 16024060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitation of metabolites of the nerve agents sarin, soman, cyclohexylsarin, VX, and Russian VX in human urine using isotope-dilution gas chromatography-tandem mass spectrometry.
    Barr JR; Driskell WJ; Aston LS; Martinez RA
    J Anal Toxicol; 2004; 28(5):372-8. PubMed ID: 15239858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.