These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 6537527)

  • 1. Activation of brain regions in rats during food-intake operant behavior.
    Morimoto A; Suzumi M; Sakata Y; Murakami N
    Physiol Behav; 1984 Dec; 33(6):965-8. PubMed ID: 6537527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in [14C]deoxyglucose incorporation into rat brain regions during heat-seeking behavior in the cold environment.
    Morimoto A; Nakamori T; Ono T; Watanabe T; Sakai Y; Murakami N
    Physiol Behav; 1986; 38(2):275-82. PubMed ID: 3797493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [14C]deoxyglucose incorporation into rat brain regions during hypothalamic or peripheral thermal stimulation.
    Morimoto A; Murakami N
    Am J Physiol; 1985 Jan; 248(1 Pt 2):R84-92. PubMed ID: 3970189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-dependent sequential increases in [14C]2-deoxyglucose uptake in subcortical and cortical structures during memory consolidation of an operant training in mice.
    Sif J; Messier C; Meunier M; Bontempi B; Calas A; Destrade C
    Behav Neural Biol; 1991 Jul; 56(1):43-61. PubMed ID: 1867626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monkey substantia nigra (pars reticulata) neuron discharges during operant feeding.
    Nishino H; Ono T; Fukuda M; Sasaki K
    Brain Res; 1985 May; 334(1):190-3. PubMed ID: 3922564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regional (14C) 2-deoxyglucose uptake during vibrissae movements evoked by rat motor cortex stimulation.
    Sharp FR; Evans K
    J Comp Neurol; 1982 Jul; 208(3):255-87. PubMed ID: 7119161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Basal ganglia neural activity during operant feeding behavior in the monkey: relation to sensory integration and motor execution.
    Nishino H; Hattori S; Muramoto K; Ono T
    Brain Res Bull; 1991; 27(3-4):463-8. PubMed ID: 1959047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural systems activated by the aversive stimulation of dorsal central gray.
    Gomita Y; Moriyama M; Ichimaru Y; Araki Y
    Jpn J Pharmacol; 1988 Sep; 48(1):137-41. PubMed ID: 3199601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional consequences of the acute administration of the cannabinoid receptor antagonist, SR141716A, in cannabinoid-naive and -tolerant animals: a quantitative 2-[14C]deoxyglucose study.
    Freedland CS; Whitlow CT; Smith HR; Porrino LJ
    Brain Res; 2003 Feb; 962(1-2):169-79. PubMed ID: 12543468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The isomers of thioctic acid alter C-deoxyglucose incorporation in rat basal ganglia.
    Seaton TA; Jenner P; Marsden CD
    Biochem Pharmacol; 1996 Apr; 51(7):983-6. PubMed ID: 8651949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dopamine efflux from the brain stem of the rat during feeding, drinking and lever-pressing for food.
    Martin GE; Myers RD
    Pharmacol Biochem Behav; 1976 May; 4(5):551-60. PubMed ID: 951434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 2-Deoxyglucose autoradiographic evidence that fetal substantia nigra grafts exert contralateral effects in 6-hydroxydopamine-lesioned animals who recover motor asymmetries.
    Zainos-Rosales A; Aguilar-Roblero R; Mendoza-Ramírez JL; Drucker-Colín R
    Neurosci Lett; 1993 Jun; 156(1-2):99-104. PubMed ID: 8414199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recovery of function and basal ganglia [14C]2-deoxyglucose uptake after nigrostriatal injury.
    Kozlowski MR; Marshall JF
    Brain Res; 1983 Jan; 259(2):237-48. PubMed ID: 6297671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An autoradiographic analysis of ascending projections from the medullary reticular formation in the rat.
    Vertes RP; Martin GF; Waltzer R
    Neuroscience; 1986 Nov; 19(3):873-98. PubMed ID: 3796820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bilateral cerebral metabolic effects of pharmacological manipulation of the substantia nigra in the rat: unilateral intranigral application of the putative excitatory neurotransmitter substance P.
    Dermon CR; Tzagournissakis M; Savaki HE
    Neuroscience; 1992 Oct; 50(4):795-809. PubMed ID: 1280349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Classical conditioning of tone-signaled bradycardia modifies 2-deoxyglucose uptake patterns in cortex, thalamus, habenula, caudate-putamen and hippocampal formation.
    Gonzalez-Lima F; Scheich H
    Brain Res; 1986 Jan; 363(2):239-56. PubMed ID: 3942896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional anatomy of the thalamic reticular nucleus as revealed with the [14C]deoxyglucose method following electrical stimulation and electrolytic lesion.
    Raos VC; Savaki HE
    Neuroscience; 1995 Sep; 68(2):287-97. PubMed ID: 7477941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic alterations in an animal model of Huntington's disease using the 14C-deoxyglucose method.
    Kimura H; McGeer EG; McGeer PL
    J Neural Transm Suppl; 1980; (16):103-9. PubMed ID: 6448915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional anatomy of the thalamic centrolateral nucleus as revealed with the [14C]deoxyglucose method following electrical stimulation and electrolytic lesion.
    Raos VC; Dermon CR; Savaki HE
    Neuroscience; 1995 Sep; 68(2):299-313. PubMed ID: 7477942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A [14C]2-deoxyglucose analysis of the functional neural pathways of the limbic forebrain in the rat. IV. A pathway from the prefrontal cortical-medial thalamic system to the hypothalamus.
    Brutus M; Watson RE; Shaikh MB; Siegel HE; Weiner S; Siegel A
    Brain Res; 1984 Sep; 310(2):279-93. PubMed ID: 6488020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.