These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 653762)

  • 1. Systematic optimization of the double-scatterer system for electron beam field-flattening.
    Mandour MA; Harder D
    Strahlentherapie; 1978 May; 154(5):328-32. PubMed ID: 653762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual scattering foil design for poly-energetic electron beams.
    Kainz KK; Antolak JA; Almond PR; Bloch CD; Hogstrom KR
    Phys Med Biol; 2005 Mar; 50(5):755-67. PubMed ID: 15798252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of scattering foil systems for forming large-sized uniform electron therapy fields.
    Kozlov AP; Shishov VA; Zabrodin BV; Regel AV
    Strahlentherapie; 1982 Jul; 158(7):432-9. PubMed ID: 7135440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of scattering foil compensators in electron beam therapy.
    Ulin K; Palisca M
    Int J Radiat Oncol Biol Phys; 1996 Jul; 35(4):785-92. PubMed ID: 8690646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A general solution to charged particle beam flattening using an optimized dual-scattering-foil technique, with application to proton therapy beams.
    Grusell E; Montelius A; Brahme A; Rikner G; Russell K
    Phys Med Biol; 1994 Dec; 39(12):2201-16. PubMed ID: 15551548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitivity of large-field electron beams to variations in a Monte Carlo accelerator model.
    Schreiber EC; Faddegon BA
    Phys Med Biol; 2005 Mar; 50(5):769-78. PubMed ID: 15798253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of electron beam obliquity on lateral buildup ratio: a Monte Carlo dosimetry evaluation.
    Chow JC; Grigorov GN
    Phys Med Biol; 2007 Jul; 52(13):3965-77. PubMed ID: 17664588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monte Carlo simulation of large electron fields.
    Faddegon B; Schreiber E; Ding X
    Phys Med Biol; 2005 Mar; 50(5):741-53. PubMed ID: 15798251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling lateral beam quality variations in pencil kernel based photon dose calculations.
    Nyholm T; Olofsson J; Ahnesjö A; Karlsson M
    Phys Med Biol; 2006 Aug; 51(16):4111-8. PubMed ID: 16885628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison between the lateral penumbra of a collimated double-scattered beam and uncollimated scanning beam in proton radiotherapy.
    Safai S; Bortfeld T; Engelsman M
    Phys Med Biol; 2008 Mar; 53(6):1729-50. PubMed ID: 18367800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Calculation of dose distribution of fast electrons within and behind tissue inhomogeneities of any width].
    Harder D; Mandour MA
    Strahlentherapie; 1976 Dec; 152(6):509-16. PubMed ID: 1006712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Dose calculation for very small irregular electron beam fields. 1. Dose calculation for the central beam using a simple field zone method].
    Gutt VF; Kuphal K; Hodapp N
    Strahlenther Onkol; 1990 Sep; 166(9):603-9. PubMed ID: 2218865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neutron production from a mobile linear accelerator operating in electron mode for intraoperative radiation therapy.
    Loi G; Dominietto M; Cannillo B; Ciocca M; Krengli M; Mones E; Negri E; Brambilla M
    Phys Med Biol; 2006 Feb; 51(3):695-702. PubMed ID: 16424589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The dosage calculation of very small irregular electron irradiation fields. 2. The dosage distribution at the edge of the field].
    Gutt VF; Kuphal K
    Strahlenther Onkol; 1991 Aug; 167(8):472-6. PubMed ID: 1887363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron beam treatment verification using measured and Monte Carlo predicted portal images.
    Jarry G; Verhaegen F
    Phys Med Biol; 2005 Nov; 50(21):4977-94. PubMed ID: 16237235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimisation of field flatness and depth-dose for therapy electron beams.
    Marbach JR; Almond PR
    Phys Med Biol; 1981 May; 26(3):435-43. PubMed ID: 6787620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calculations for beam-flattening filters for high-energy x-ray machines.
    Larsen RD; Brown LH; Bjärngard BE
    Med Phys; 1978; 5(3):215-20. PubMed ID: 97507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effect of bone absorption on dose of high energy electron beam].
    Inada T
    Nihon Igaku Hoshasen Gakkai Zasshi; 1971 Apr; 31(1):7-12. PubMed ID: 5281491
    [No Abstract]   [Full Text] [Related]  

  • 19. [Experimental studies of the scatter behavior of fast electrons in the use of electron applicators in radiotherapy].
    Schatz M; Kaulich TW
    Rofo; 1985 Dec; 143(6):705-9. PubMed ID: 3001866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Theoretical investigations for optimising the quantum in radiodiagnosis (author's transl)].
    Freyer G; Rosenkranz G
    Rofo; 1975 Dec; 123(6):571-9. PubMed ID: 129414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.