These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 6538879)

  • 1. Intracellular control of axial shape in non-uniform neurites: a serial electron microscopic analysis of organelles and microtubules in AI and AII retinal amacrine neurites.
    Sasaki-Sherrington SE; Jacobs JR; Stevens JK
    J Cell Biol; 1984 Apr; 98(4):1279-90. PubMed ID: 6538879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental modification of PC12 neurite shape with the microtubule-depolymerizing drug Nocodazole: a serial electron microscopic study of neurite shape control.
    Jacobs JR; Stevens JK
    J Cell Biol; 1986 Sep; 103(3):907-15. PubMed ID: 3745274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The cytoskeleton of neurites after microtubule depolymerization.
    Joshi HC; Baas P; Chu DT; Heidemann SR
    Exp Cell Res; 1986 Mar; 163(1):233-45. PubMed ID: 3943562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Serial reconstruction of microtubular arrays within dendrites of the cat retinal ganglion cell: the cytoskeleton of a vertebrate dendrite.
    Sasaki S; Stevens JK; Bodick N
    Brain Res; 1983 Jan; 259(2):193-206. PubMed ID: 6824937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytoplasmic structure in rapid-frozen axons.
    Schnapp BJ; Reese TS
    J Cell Biol; 1982 Sep; 94(3):667-9. PubMed ID: 6182148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in the organization of the neuritic cytoskeleton during nerve growth factor-activated differentiation of PC12 cells: a serial electron microscopic study of the development and control of neurite shape.
    Jacobs JR; Stevens JK
    J Cell Biol; 1986 Sep; 103(3):895-906. PubMed ID: 3745273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Irregular geometries in normal unmyelinated axons: a 3D serial EM analysis.
    Greenberg MM; Leitao C; Trogadis J; Stevens JK
    J Neurocytol; 1990 Dec; 19(6):978-88. PubMed ID: 2292722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for self-absorption of terminals by developing axons of retinal ganglion cells in the chick.
    Ehrlich D; Mills D
    Brain Res; 1985 Jan; 349(1-2):285-9. PubMed ID: 3986594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional fine structure of the organization of microtubules in neurite varicosities by ultra-high voltage electron microscope tomography.
    Nishida T; Yoshimura R; Endo Y
    Cell Tissue Res; 2017 Sep; 369(3):467-476. PubMed ID: 28646303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polarized compartmentalization of organelles in growth cones from developing optic tectum.
    Cheng TP; Reese TS
    J Cell Biol; 1985 Oct; 101(4):1473-80. PubMed ID: 3930511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The superficial plexiform layer: a third retinal association area.
    Wieniawa-Narkiewicz E; Hughes A
    J Comp Neurol; 1992 Oct; 324(4):463-84. PubMed ID: 1430334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The dendritic varicosity: a mechanism for electrically isolating the dendrites of cat retinal amacrine cells?
    Ellias SA; Stevens JK
    Brain Res; 1980 Sep; 196(2):365-72. PubMed ID: 6249448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cross-linker system between neurofilaments, microtubules, and membranous organelles in frog axons revealed by the quick-freeze, deep-etching method.
    Hirokawa N
    J Cell Biol; 1982 Jul; 94(1):129-42. PubMed ID: 6181077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. OFF-alpha and OFF-beta ganglion cells in cat retina: II. Neural circuitry as revealed by electron microscopy of HRP stains.
    Kolb H; Nelson R
    J Comp Neurol; 1993 Mar; 329(1):85-110. PubMed ID: 8454727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Circuitry and role of substance P-immunoreactive neurons in the primate retina.
    Cuenca N; Kolb H
    J Comp Neurol; 1998 Apr; 393(4):439-56. PubMed ID: 9550150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microtubule stability in severed axons.
    White LA; Baas PW; Heidemann SR
    J Neurocytol; 1987 Dec; 16(6):775-84. PubMed ID: 3450789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The distribution, relationships to other organelles, and calcium-sequestering ability of smooth endoplasmic reticulum in frog olfactory axons.
    Burton PR; Laveri LA
    J Neurosci; 1985 Nov; 5(11):3047-60. PubMed ID: 3877151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The recovery of organelle transport and microtubule integrity in myelinated axons that are frozen and thawed.
    Smith RS; Kendal WS
    Can J Physiol Pharmacol; 1985 Apr; 63(4):292-7. PubMed ID: 2408718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic shape changes of cytoplasmic organelles translocating along microtubules.
    Kachar B; Bridgman PC; Reese TS
    J Cell Biol; 1987 Sep; 105(3):1267-71. PubMed ID: 3654751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytoskeletal architecture and immunocytochemical localization of microtubule-associated proteins in regions of axons associated with rapid axonal transport: the beta,beta'-iminodipropionitrile-intoxicated axon as a model system.
    Hirokawa N; Bloom GS; Vallee RB
    J Cell Biol; 1985 Jul; 101(1):227-39. PubMed ID: 2409096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.