These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 6538981)

  • 21. Stress-induced opioid analgesia and activity in mice: inhibitory influences of exposure to magnetic fields.
    Kavaliers M; Ossenkopp KP
    Psychopharmacology (Berl); 1986; 89(4):440-3. PubMed ID: 3092274
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pineal involvement in the diurnal rhythm of nociception in the rat.
    Bar-Or A; Brown GM
    Life Sci; 1989; 44(16):1067-75. PubMed ID: 2704291
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Magnetic fields abolish nychthemeral rhythmicity of responses of Purkinje cells to the pineal hormone melatonin in the pigeon's cerebellum.
    Demaine C; Semm P
    Neurosci Lett; 1986 Dec; 72(2):158-62. PubMed ID: 3808470
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exposure to a nonfunctional hot plate as a factor in the assessment of morphine-induced analgesia and analgesic tolerance in rats.
    Bardo MT; Hughes RA
    Pharmacol Biochem Behav; 1979 Apr; 10(4):481-5. PubMed ID: 461477
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Restraint-induced analgesia in the CD-1 mouse: interactions with morphine and time of day.
    Miller DB
    Brain Res; 1988 Nov; 473(2):327-35. PubMed ID: 3233495
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inbred strain differences in morphine-induced analgesia with the hot plate assay: a reassessment.
    Belknap JK; Lamé M; Danielson PW
    Behav Genet; 1990 Mar; 20(2):333-8. PubMed ID: 2353915
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Diurnal variations in the analgesic effectiveness of morphine in mice.
    Bornschein RL; Crockett RS; Smith RP
    Pharmacol Biochem Behav; 1977 Jun; 6(6):621-6. PubMed ID: 263667
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Magnetic fields and pineal function in humans: evaluation of nocturnal acute exposure to extremely low frequency magnetic fields on serum melatonin and urinary 6-sulfatoxymelatonin circadian rhythms.
    Selmaoui B; Lambrozo J; Touitou Y
    Life Sci; 1996; 58(18):1539-49. PubMed ID: 8649183
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Morphine analgesia in normal and alloxanized mice.
    Ginawi OT
    Arch Int Pharmacodyn Ther; 1992; 318():13-20. PubMed ID: 1361122
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Potentiation of morphine analgesia in rats given a single exposure to restraint stress immobilization.
    Calcagnetti DJ; Holtzman SG
    Pharmacol Biochem Behav; 1992 Feb; 41(2):449-53. PubMed ID: 1574536
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of circadian rhythm and endogenous melatonin in pathogenesis of acute gastric bleeding erosions induced by stress.
    Brzozowski T; Zwirska-Korczala K; Konturek PC; Konturek SJ; Sliwowski Z; Pawlik M; Kwiecien S; Drozdowicz D; Mazurkiewicz-Janik M; Bielanski W; Pawlik WW
    J Physiol Pharmacol; 2007 Dec; 58 Suppl 6():53-64. PubMed ID: 18212400
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of light or different earth-strength magnetic fields on the nocturnal melatonin concentration in a migratory bird.
    Schneider T; Thalau HP; Semm P
    Neurosci Lett; 1994 Feb; 168(1-2):73-5. PubMed ID: 8028796
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Morphine effects on activity and pain reactivity of developing mice with or without late prenatal oxazepam exposure.
    Alleva E; Laviola G; Bignami G
    Psychopharmacology (Berl); 1987; 92(4):438-40. PubMed ID: 3114795
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Temporal variation in drug interaction between lithium and morphine-induced analgesia.
    Karakucuk EH; Yamanoglu T; Demirel O; Bora N; Zengil H
    Chronobiol Int; 2006; 23(3):675-82. PubMed ID: 16753949
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulation of melatonin synthesis in the ovine pineal gland.
    Namboodiri MA; Valivullah HM; Moffett JR
    Adv Exp Med Biol; 1991; 294():137-48. PubMed ID: 1772063
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inhibitory influences of mammalian FMRFamide (Phe-Met-Arg-Phe-amide)-related peptides on nociception and morphine- and stress-induced analgesia in mice.
    Kavaliers M
    Neurosci Lett; 1990 Jul; 115(2-3):307-12. PubMed ID: 2234508
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The influence of long-term exposure of mice to randomly varied power frequency magnetic fields on their nocturnal melatonin secretion patterns.
    de Bruyn L; de Jager L; Kuyl JM
    Environ Res; 2001 Feb; 85(2):115-21. PubMed ID: 11161661
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The pineal gland is critical for circadian Period1 expression in the striatum and for circadian cocaine sensitization in mice.
    Uz T; Akhisaroglu M; Ahmed R; Manev H
    Neuropsychopharmacology; 2003 Dec; 28(12):2117-23. PubMed ID: 12865893
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evidence for the activation of the endogenous opiate system in hamsters infected with human blood flukes, Schistosoma mansoni.
    Kavaliers M; Podesta RB; Hirst M; Young B
    Life Sci; 1984 Dec; 35(23):2365-73. PubMed ID: 6094941
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Marked rapid alterations in nocturnal pineal serotonin metabolism in mice and rats exposed to weak intermittent magnetic fields.
    Lerchl A; Nonaka KO; Stokkan KA; Reiter RJ
    Biochem Biophys Res Commun; 1990 May; 169(1):102-8. PubMed ID: 1693500
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.