These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 6539622)

  • 1. Computational analysis of models for cotransport.
    Harrison DA; Rowe GW; Lumsden CJ; Silverman M
    Biochim Biophys Acta; 1984 Jul; 774(1):1-10. PubMed ID: 6539622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic features of cotransport mechanisms under isotope exchange conditions.
    Hopfer U; Liedtke CM
    Membr Biochem; 1981; 4(1):11-29. PubMed ID: 7012543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energetic coupling of Na-glucose cotransport.
    Centelles JJ; Kinne RK; Heinz E
    Biochim Biophys Acta; 1991 Jun; 1065(2):239-49. PubMed ID: 2059656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic analysis of a family of cotransport models.
    Turner RJ
    Biochim Biophys Acta; 1981 Dec; 649(2):269-80. PubMed ID: 7317398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generalized kinetic analysis of ion-driven cotransport systems: II. Random ligand binding as a simple explanation for non-michaelian kinetics.
    Sanders D
    J Membr Biol; 1986; 90(1):67-87. PubMed ID: 2422385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Secondary active nutrient transport in membrane vesicles: theoretical basis for use of isotope exchange at equilibrium and contributions to transport mechanisms.
    Hopfer U
    Biochem Soc Symp; 1985; 50():151-68. PubMed ID: 3915868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Presteady-state kinetics and carrier-mediated transport: a theoretical analysis.
    Wierzbicki W; Berteloot A; Roy G
    J Membr Biol; 1990 Jul; 117(1):11-27. PubMed ID: 2402006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Na(+)-dependent proline carrier, of eel intestinal brush-border membrane, sequentially binds proline and then Na+.
    Maffia M; Cassano G; Marcucci D; Vilella S; Storelli C
    Biochim Biophys Acta; 1990 Aug; 1027(1):8-16. PubMed ID: 2397223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduction of an eight-state mechanism of cotransport to a six-state model using a new computer program.
    Falk S; Guay A; Chenu C; Patil SD; Berteloot A
    Biophys J; 1998 Feb; 74(2 Pt 1):816-30. PubMed ID: 9533694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A model of Na-K-2Cl cotransport based on ordered ion binding and glide symmetry.
    Lytle C; McManus TJ; Haas M
    Am J Physiol; 1998 Feb; 274(2):C299-309. PubMed ID: 9486118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sodium leak pathway and substrate binding order in the Na+-glucose cotransporter.
    Chen XZ; Coady MJ; Jalal F; Wallendorff B; Lapointe JY
    Biophys J; 1997 Nov; 73(5):2503-10. PubMed ID: 9370443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generalized kinetic analysis of ion-driven cotransport systems: a unified interpretation of selective ionic effects on Michaelis parameters.
    Sanders D; Hansen UP; Gradmann D; Slayman CL
    J Membr Biol; 1984; 77(2):123-52. PubMed ID: 6708088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. General rate equations and rejection criteria for the rapid equilibrium carrier model of cotransport.
    Turner RJ
    Biochim Biophys Acta; 1982 Aug; 689(3):444-50. PubMed ID: 7126559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic mechanism of Na+ -glucose cotransport through the rabbit intestinal SGLT1 protein.
    Berteloot A
    J Membr Biol; 2003 Mar; 192(2):89-100. PubMed ID: 12682797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phenylalanine transport in guinea pig jejunum. A general mechanism for organic solute and sodium cotransport.
    Alvarado F; Lherminier M
    J Physiol (Paris); 1982 Aug; 78(2):131-45. PubMed ID: 7131327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epidermal growth factor up-regulates sodium-glucose cotransport in enterocyte models in the presence of cholera toxin.
    Mehta DI; Horváth K; Chanasongcram S; Hill ID; Panigrahi P
    JPEN J Parenter Enteral Nutr; 1997; 21(4):185-91. PubMed ID: 9252942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic analysis of mechanism of intestinal Na+-dependent sugar transport.
    Restrepo D; Kimmich GA
    Am J Physiol; 1985 May; 248(5 Pt 1):C498-509. PubMed ID: 3993771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural state of the Na+/D-glucose cotransporter in calf kidney brush-border membranes. Target size analysis of Na+-dependent phlorizin binding and Na+-dependent D-glucose transport.
    Lin JT; Szwarc K; Kinne R; Jung CY
    Biochim Biophys Acta; 1984 Nov; 777(2):201-8. PubMed ID: 6148966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrogenicity of sodium/L-glutamate cotransport in rabbit renal brush-border membranes: a reevaluation.
    Heinz E; Sommerfeld DL; Kinne RK
    Biochim Biophys Acta; 1988 Jan; 937(2):300-8. PubMed ID: 2892532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of substrate specificity in facilitated transport systems.
    Krupka RM
    J Membr Biol; 1990 Jul; 117(1):69-78. PubMed ID: 2205724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.