These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 6539768)
41. Utilization of algal sugars and glycerol for enhanced cephalosporin C production by Acremonium chrysogenum M35. Lee JH; Yoo HY; Yang X; Kim DS; Lee JH; Lee SK; Han SO; Kim SW Lett Appl Microbiol; 2017 Jan; 64(1):66-72. PubMed ID: 27736007 [TBL] [Abstract][Full Text] [Related]
42. Sulfur metabolism of a mutant of Cephalosporium acremonium with enhanced potential to utilize sulfate for cephalosporin C production. Komatsu KI; Kodaira R J Antibiot (Tokyo); 1977 Mar; 30(3):226-33. PubMed ID: 558969 [TBL] [Abstract][Full Text] [Related]
43. Morphology and kinetics studies on cephalosporin C production by Cephalosporium acremonium M25 in a 30-l bioreactor using a mixture of inocula. Kim JH; Lim JS; Kim CH; Kim SW Lett Appl Microbiol; 2005; 40(5):307-11. PubMed ID: 15836730 [TBL] [Abstract][Full Text] [Related]
44. Studies on the cell-free biosynthesis of beta-lactam antibiotics. Bost PE; Demain AL Biochem J; 1977 Mar; 162(3):681-7. PubMed ID: 559491 [TBL] [Abstract][Full Text] [Related]
45. Compartmentalization and transport in beta-lactam antibiotics biosynthesis. Evers ME; Trip H; van den Berg MA; Bovenberg RA; Driessen AJ Adv Biochem Eng Biotechnol; 2004; 88():111-35. PubMed ID: 15719554 [TBL] [Abstract][Full Text] [Related]
46. Production of cephalosporin C by immobilized cells of Cephalosporium acremonium. Ellaiah P; Murali Chand G; Srinivasulu B; Pardhasaradhi SV Indian J Exp Biol; 2000 Nov; 38(11):1134-7. PubMed ID: 11395958 [TBL] [Abstract][Full Text] [Related]
47. A study of the biosynthesis of the tripeptide delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine in a beta-lactam-negative mutant of Cephalosporium acremonium. Adlington RM; Baldwin JE; Lopez-Nieto M; Murphy JA; Patel N Biochem J; 1983 Sep; 213(3):573-6. PubMed ID: 6684424 [TBL] [Abstract][Full Text] [Related]
48. Partial purification and catalytic properties of a bifunctional enzyme in the biosynthetic pathway of beta-lactams in Cephalosporium acremonium. Scheidegger A; Küenzi MT; Nüesch J J Antibiot (Tokyo); 1984 May; 37(5):522-31. PubMed ID: 6539769 [TBL] [Abstract][Full Text] [Related]
49. Strain improvement studies for cephalosporin C production by Cephalosporium acremonium. Ellaiah P; Adinarayana K; Chand GM; Subramanyam GS; Srinivasulu B Pharmazie; 2002 Jul; 57(7):489-90. PubMed ID: 12168534 [TBL] [Abstract][Full Text] [Related]
50. Aspects on evolution of fungal beta-lactam biosynthesis gene clusters and recruitment of trans-acting factors. Brakhage AA; Thön M; Spröte P; Scharf DH; Al-Abdallah Q; Wolke SM; Hortschansky P Phytochemistry; 2009; 70(15-16):1801-11. PubMed ID: 19863978 [TBL] [Abstract][Full Text] [Related]
51. [Variability of a Cephalosporium acremonium culture for 2 quantitative traits: antibiotic formation and proteolytic activity]. Shuvalova IA; Bartoshevich IuE Antibiotiki; 1980 Sep; 25(9):643-7. PubMed ID: 6998368 [TBL] [Abstract][Full Text] [Related]
52. [Cephalosporin C production by solid state fermentation with rice grains]. Wang HH; Chiou JY; Wang JY; Hong CY; Tsen WC Zhonghua Min Guo Wei Sheng Wu Ji Mian Yi Xue Za Zhi; 1984 Feb; 17(1):55-69. PubMed ID: 6540160 [TBL] [Abstract][Full Text] [Related]
53. Simulation of diauxic production of cephalosporin C by Cephalosporium acremonium: lag model for fed-batch fermentation. Basak S; Velayudhan A; Ladisch MR Biotechnol Prog; 1995; 11(6):626-31. PubMed ID: 8541014 [TBL] [Abstract][Full Text] [Related]
54. Involvement of nitrogen-containing compounds in beta-lactam biosynthesis and its control. Demain AL; Vaishnav P Crit Rev Biotechnol; 2006; 26(2):67-82. PubMed ID: 16809098 [TBL] [Abstract][Full Text] [Related]
55. Compartmentalization and transport in beta-lactam antibiotic biosynthesis by filamentous fungi. van de Kamp M; Driessen AJ; Konings WN Antonie Van Leeuwenhoek; 1999; 75(1-2):41-78. PubMed ID: 10422581 [TBL] [Abstract][Full Text] [Related]
56. Transport of substrates into peroxisomes: the paradigm of β-lactam biosynthetic intermediates. Martín JF; García-Estrada C; Ullán RV Biomol Concepts; 2013 Apr; 4(2):197-211. PubMed ID: 25436576 [TBL] [Abstract][Full Text] [Related]
57. Tools for advanced and targeted genetic manipulation of the β-lactam antibiotic producer Acremonium chrysogenum. Bloemendal S; Löper D; Terfehr D; Kopke K; Kluge J; Teichert I; Kück U J Biotechnol; 2014 Jan; 169():51-62. PubMed ID: 24216341 [TBL] [Abstract][Full Text] [Related]
58. Glutamate dehydrogenase specific activity and cephalosporin C synthesis in the M8650 series of Cephalosporium acremonium mutants. Queener SW; McDermott J; Radue AB Antimicrob Agents Chemother; 1975 May; 7(5):646-51. PubMed ID: 1170808 [TBL] [Abstract][Full Text] [Related]
59. Significant decrease of broth viscosity and glucose consumption in erythromycin fermentation by dynamic regulation of ammonium sulfate and phosphate. Chen Y; Wang Z; Chu J; Zhuang Y; Zhang S; Yu X Bioresour Technol; 2013 Apr; 134():173-9. PubMed ID: 23500575 [TBL] [Abstract][Full Text] [Related]
60. Cephalosporin C production by immobilized Cephalosporium acremonium cells in a repeated batch tower bioreactor. Cruz AJ; Pan T; Giordano RC; Araujo ML; Hokka CO Biotechnol Bioeng; 2004 Jan; 85(1):96-102. PubMed ID: 14705016 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]