These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 6539834)
1. Human gradient-layer calorimeter: development of an accurate and practical instrument for clinical studies. McManus C; Newhouse H; Seitz S; Nixon D; Poppendiek H; Heymsfield S JPEN J Parenter Enteral Nutr; 1984; 8(3):317-20. PubMed ID: 6539834 [TBL] [Abstract][Full Text] [Related]
2. A human calorimeter for the direct and indirect measurement of 24 h energy expenditure. Dauncey MJ; Murgatroyd PR; Cole TJ Br J Nutr; 1978 May; 39(3):557-66. PubMed ID: 638125 [TBL] [Abstract][Full Text] [Related]
3. A gradient-layer calorimeter for measurement of energy expenditure of infants. Meis SJ; Dove EL; Bell EF; Thompson CM; Glatzl-Hawlik MA; Gants AL; Kim WK Am J Physiol; 1994 Mar; 266(3 Pt 2):R1052-60. PubMed ID: 8160854 [TBL] [Abstract][Full Text] [Related]
5. Description of a direct-indirect room-sized calorimeter. Seale JL; Rumpler WV; Moe PW Am J Physiol; 1991 Feb; 260(2 Pt 1):E306-20. PubMed ID: 1996633 [TBL] [Abstract][Full Text] [Related]
6. The Snellen human calorimeter revisited, re-engineered and upgraded: design and performance characteristics. Reardon FD; Leppik KE; Wegmann R; Webb P; Ducharme MB; Kenny GP Med Biol Eng Comput; 2006 Aug; 44(8):721-8. PubMed ID: 16937214 [TBL] [Abstract][Full Text] [Related]
7. Calorimetry with heat flux transducers: comparison with a suit calorimeter. Layton RP; Mints WH; Annis JF; Rack MJ; Webb P J Appl Physiol Respir Environ Exerc Physiol; 1983 May; 54(5):1361-7. PubMed ID: 6863096 [TBL] [Abstract][Full Text] [Related]
8. A computer-controlled indirect calorimeter for the measurement of energy expenditure in one or two subjects simultaneously. Garrow JS; Webster JD Hum Nutr Clin Nutr; 1986 Jul; 40(4):315-21. PubMed ID: 3744892 [TBL] [Abstract][Full Text] [Related]
9. Development of a large-scale biocalorimeter to monitor and control bioprocesses. Voisard D; Pugeaud P; Kumar AR; Jenny K; Jayaraman K; Marison IW; von Stockar U Biotechnol Bioeng; 2002 Oct; 80(2):125-38. PubMed ID: 12209768 [TBL] [Abstract][Full Text] [Related]
10. Absolute x-ray dosimetry on a synchrotron medical beam line with a graphite calorimeter. Harty PD; Lye JE; Ramanathan G; Butler DJ; Hall CJ; Stevenson AW; Johnston PN Med Phys; 2014 May; 41(5):052101. PubMed ID: 24784390 [TBL] [Abstract][Full Text] [Related]
12. Direct calorimetry: a new clinical approach for measuring thermoregulatory responses in man. Jéquier E Bibl Radiol; 1975; (6):185-90. PubMed ID: 1180849 [TBL] [Abstract][Full Text] [Related]
13. A fast responding combined direct and indirect calorimeter for human subjects. Faber P; Lammert O; Johansen O; Garby L Med Eng Phys; 1998 Jun; 20(4):291-301. PubMed ID: 9728680 [TBL] [Abstract][Full Text] [Related]
14. Fabrication and characterization of a multichannel 3D thermopile for chip calorimeter applications. Huynh TP; Zhang Y; Yehuda C Sensors (Basel); 2015 Feb; 15(2):3351-61. PubMed ID: 25654716 [TBL] [Abstract][Full Text] [Related]
15. A high-temperature high-pressure calorimeter for determining heats of solution up to 623 K. Djamali E; Turner PJ; Murray RC; Cobble JW Rev Sci Instrum; 2010 Jul; 81(7):075105. PubMed ID: 20687757 [TBL] [Abstract][Full Text] [Related]
16. Flow Type Bio-Chemical Calorimeter with Micro Differential Thermopile Sensor. Saito M; Nakabeppu O J Nanosci Nanotechnol; 2015 Apr; 15(4):2917-22. PubMed ID: 26353514 [TBL] [Abstract][Full Text] [Related]
17. A novel approach for measuring energy expenditure in free-living humans. Melanson EL; Dykstra JC; Szuminsky N Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6873-7. PubMed ID: 19964187 [TBL] [Abstract][Full Text] [Related]
18. Chip calorimetry for the monitoring of whole cell biotransformation. Maskow T; Lerchner J; Peitzsch M; Harms H; Wolf G J Biotechnol; 2006 Apr; 122(4):431-42. PubMed ID: 16309773 [TBL] [Abstract][Full Text] [Related]