BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 6540462)

  • 41. Arrhenius relationships from the molecule and cell to the clinic.
    Dewey WC
    Int J Hyperthermia; 2009 Feb; 25(1):3-20. PubMed ID: 19219695
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A comparison of the enhancement of radiation sensitivity and DNA polymerase inactivation by hyperthermia in human glioma cells.
    Raaphorst GP; Feeley MM; Chu GL; Dewey WC
    Radiat Res; 1993 Jun; 134(3):331-6. PubMed ID: 8316626
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fluorescence-activated cell sorting analysis of the induction and expression of acute thermal tolerance within the cell cycle.
    Rice GC; Gray JW; Dean PN; Dewey WC
    Cancer Res; 1984 Jun; 44(6):2368-76. PubMed ID: 6722776
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hyperthermia-induced cell death, thermotolerance, and heat shock proteins in normal, respiration-deficient, and glycolysis-deficient Chinese hamster cells.
    Landry J; Samson S; Chrétien P
    Cancer Res; 1986 Jan; 46(1):324-7. PubMed ID: 3940198
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evaluation of a role for intracellular Na+, K+, Ca2+, and Mg2+ in hyperthermic cell killing.
    Vidair CA; Dewey WC
    Radiat Res; 1986 Feb; 105(2):187-200. PubMed ID: 3952270
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Heat protectors and heat-induced preferential redistribution of 26 and 70 kDa proteins in Chinese hamster ovary cells.
    Lee YJ; Armour EP; Borrelli MJ; Corry PM
    J Cell Physiol; 1989 Dec; 141(3):510-6. PubMed ID: 2592426
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Influence of pH on the thermal sensitivity of cultured human glioblastoma cells.
    Gerweck LE; Richards B
    Cancer Res; 1981 Mar; 41(3):845-9. PubMed ID: 7459870
    [TBL] [Abstract][Full Text] [Related]  

  • 48. pH-dependent effects of the ionophore nigericin on response of mammalian cells to radiation and heat treatment.
    Varnes ME; Glazier KG; Gray C
    Radiat Res; 1989 Feb; 117(2):282-92. PubMed ID: 2922473
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Time-temperature analyses of cell killing of synchronous G1 and S phase Chinese hamster cells in vitro.
    Mackey MA; Dewey WC
    Radiat Res; 1988 Feb; 113(2):318-33. PubMed ID: 3340736
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Morphological response and survival of hepatoma cells during fractionated hyperthermia: effect of glycerol.
    van Rijn J; van den Berg J; Schamhart DH; van Wijk R
    Radiat Res; 1984 Jun; 98(3):471-8. PubMed ID: 6729047
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of heat shock proteins (Mr 70,000) on protein and DNA synthesis at elevated temperatures in vitro.
    Mivechi NF; Ogilvie PD
    Cancer Res; 1989 Mar; 49(6):1492-6. PubMed ID: 2466556
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Exposure to pretreatment hypothermia as a determinant of heat killing.
    Herman TS; Henle KJ; Nagle WA; Moss AJ; Monson TP
    Radiat Res; 1984 May; 98(2):345-53. PubMed ID: 6729042
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of topoisomerase II inhibitors on hyperthermic cytotoxicity.
    Warters RL; Brizgys LM
    Cancer Res; 1988 Jul; 48(14):3932-8. PubMed ID: 2838165
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Acute extracellular acidification reduces intracellular pH, 42 degrees C-induction of heat shock proteins and clonal survival of human melanoma cells grown at pH 6.7.
    Coss RA; Storck CW; Wachsberger PR; Reilly J; Leeper DB; Berd D; Wahl ML
    Int J Hyperthermia; 2004 Feb; 20(1):93-106. PubMed ID: 14612316
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Inhibition of repair of X-ray-induced DNA damage by heat: the role of hyperthermic inhibition of DNA polymerase alpha activity.
    Kampinga HH; Konings AW
    Radiat Res; 1987 Oct; 112(1):86-98. PubMed ID: 3116599
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of pH and elevated temperatures on the cytotoxicity of some chemotherapeutic agents on Chinese hamster cells in vitro.
    Hahn GM; Shiu EC
    Cancer Res; 1983 Dec; 43(12 Pt 1):5789-91. PubMed ID: 6196107
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The role of intracellular pH and its variance in low pH sensitization of killing by hyperthermia.
    Chu GL; Wang ZH; Hyun WC; Pershadsingh HA; Fulwyler MJ; Dewey WC
    Radiat Res; 1990 Jun; 122(3):288-93. PubMed ID: 2356282
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Recovery from effects of heat on DNA synthesis in Chinese hamster ovary cells.
    Wong RS; Thompson LL; Dewey WC
    Radiat Res; 1988 Apr; 114(1):125-37. PubMed ID: 3353500
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cycle progression and division of viable and nonviable Chinese hamster ovary cells following acute hyperthermia and their relationship to thermal tolerance decay.
    Rice GC; Gray JW; Dewey WC
    Cancer Res; 1984 May; 44(5):1802-8. PubMed ID: 6713384
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Heat-induced changes in intracellular sodium and membrane potential: lack of a role in cell killing and thermotolerance.
    Amorino GP; Fox MH
    Radiat Res; 1996 Sep; 146(3):283-92. PubMed ID: 8752306
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.