BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 6540462)

  • 81. Inhibition of antioxidants and hyperthermia enhance bleomycin-induced cytotoxicity and lipid peroxidation in Chinese hamster ovary cells.
    Khadir A; Verreault J; Averill DA
    Arch Biochem Biophys; 1999 Oct; 370(2):163-75. PubMed ID: 10510274
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Effects of hyperthermia on p53 protein expression and activity.
    Guan J; Stavridi E; Leeper DB; Iliakis G
    J Cell Physiol; 2002 Mar; 190(3):365-74. PubMed ID: 11857452
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Defective removal of DNA cross-links in a repair-deficient mutant of Chinese hamster cells.
    Meyn RE; Jenkins SF; Thompson LH
    Cancer Res; 1982 Aug; 42(8):3106-10. PubMed ID: 6807537
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Rapid loss of stress fibers in Chinese hamster ovary cells after hyperthermia.
    Glass JR; DeWitt RG; Cress AE
    Cancer Res; 1985 Jan; 45(1):258-62. PubMed ID: 4038379
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Delayed sensitization to heat by inhibitors of polyamine-biosynthetic enzymes.
    Fuller DJ; Gerner EW
    Cancer Res; 1982 Dec; 42(12):5046-9. PubMed ID: 6814750
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Correlation of mammalian cell killing by heat shock to intramembranous particle aggregation and lateral phase separation using fluorescence-activated cell sorting.
    Rice GC; Fisher KA; Fisher GA; Hahn GM
    Radiat Res; 1987 Nov; 112(2):351-64. PubMed ID: 3120236
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Effects of hyperthermia (41.5 degrees) on Chinese hamster ovary cells analyzed in motisis.
    Coss RA; Dewey WC; Bamburg JR
    Cancer Res; 1979 Jun; 39(6 Pt 1):1911-8. PubMed ID: 445391
    [TBL] [Abstract][Full Text] [Related]  

  • 88. The role of energy in hyperthermia-induced mammalian cell inactivation: a study of the effects of glucose starvation and an uncoupler of oxidative phosphorylation.
    Haveman J; Hahn GM
    J Cell Physiol; 1981 May; 107(2):237-41. PubMed ID: 7195908
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Reduction of 1-beta-D-arabinofuranosylcytosine and adriamycin cytotoxicity following cell cycle arrest by anguidine.
    Teodori L; Barlogie B; Drewinko B; Swartzendruber D; Mauro F
    Cancer Res; 1981 Apr; 41(4):1263-70. PubMed ID: 7214318
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Mechanism of spermidine cytotoxicity at 37 degrees C and 43 degrees C in Chinese hamster ovary cells.
    Henle KJ; Moss AJ; Nagle WA
    Cancer Res; 1986 Jan; 46(1):175-82. PubMed ID: 3079584
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Ultrastructural study of mitochondrial damage in CHO cells exposed to hyperthermia.
    Cole A; Armour EP
    Radiat Res; 1988 Sep; 115(3):421-35. PubMed ID: 3174928
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Effect of heating on lethality due to hyperthermia and selected chemotherapeutic drugs.
    Herman TS; Sweets CC; White DM; Gerner EW
    J Natl Cancer Inst; 1982 Mar; 68(3):487-91. PubMed ID: 6950177
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Role of ATP in the sensitivity to heat and the induction of apoptosis in mammalian cells.
    Miyazaki N; Kurihara K; Nakano H; Shinohara K
    Int J Hyperthermia; 2002; 18(4):316-31. PubMed ID: 12079587
    [TBL] [Abstract][Full Text] [Related]  

  • 94. A proposed operational model of thermotolerance based on effects of nutrients and the initial treatment temperature.
    Li GC; Hahn GM
    Cancer Res; 1980 Dec; 40(12):4501-8. PubMed ID: 7438083
    [TBL] [Abstract][Full Text] [Related]  

  • 95. The effect of low pH on thermotolerance induction using fractionated 45 degrees C hyperthermia.
    Goldin EM; Leeper DB
    Radiat Res; 1981 Mar; 85(3):472-9. PubMed ID: 7193895
    [No Abstract]   [Full Text] [Related]  

  • 96. DNA lesions in hyperthermic cell killing: effects of thermotolerance, procaine, and erythritol.
    Jorritsma JB; Konings AW
    Radiat Res; 1986 Apr; 106(1):89-97. PubMed ID: 3961107
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Hyperthermia and thermal tolerance in normal and ataxia telangiectasia human cell strains.
    Raaphorst GP; Azzam EI
    Cancer Res; 1983 Jun; 43(6):2618-21. PubMed ID: 6682697
    [TBL] [Abstract][Full Text] [Related]  

  • 98. The effect of 45 degrees C hyperthermia on the membrane fluidity of cells of several lines.
    Dynlacht JR; Fox MH
    Radiat Res; 1992 Apr; 130(1):55-60. PubMed ID: 1561318
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Hyperthermia can reduce cytotoxicity from etoposide without a corresponding reduction in the number of topoisomerase II-DNA cleavable complexes.
    Dynlacht JR; Wong RS; Albright N; Dewey WC
    Cancer Res; 1994 Aug; 54(15):4129-37. PubMed ID: 8033146
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Role of extracellular calcium in the hyperthermic killing of CHL V79 cells.
    Malhotra A; Heynen ML; Lepock JR
    Radiat Res; 1987 Dec; 112(3):478-89. PubMed ID: 3423214
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.