These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 6542098)
1. Dissimilation of aromatic compounds in Rhodotorula graminis: biochemical characterization of pleiotropically negative mutants. Durham DR; McNamee CG; Stewart DB J Bacteriol; 1984 Nov; 160(2):771-7. PubMed ID: 6542098 [TBL] [Abstract][Full Text] [Related]
2. Initial reactions involved in the dissimilation of mandelate by Rhodotorula graminis. Durham DR J Bacteriol; 1984 Nov; 160(2):778-80. PubMed ID: 6389497 [TBL] [Abstract][Full Text] [Related]
3. Aromatic metabolism in the fungi. Growth of Rhodotorula mucilaginosa in p-hydroxybenzoate-limited chemostats and the effects of growth rate on the synthesis of enzymes of the 3-oxoadipate pathway. Huber TJ; Street JR; Bull AT; Cook KA; Cain RB Arch Microbiol; 1975; 102(2):139-44. PubMed ID: 1090273 [TBL] [Abstract][Full Text] [Related]
4. Properties of a membrane-associated benzoate-4-hydroxylase from Rhodotorula graminis. McNamee CG; Durham DR Biochem Biophys Res Commun; 1985 Jun; 129(2):485-92. PubMed ID: 4040365 [TBL] [Abstract][Full Text] [Related]
5. The metabolism of aromatic acids by micro-organisms. Metabolic pathways in the fungi. Cain RB; Bilton RF; Darrah JA Biochem J; 1968 Aug; 108(5):797-828. PubMed ID: 5691754 [TBL] [Abstract][Full Text] [Related]
6. Repression of 4-hydroxybenzoate transport and degradation by benzoate: a new layer of regulatory control in the Pseudomonas putida beta-ketoadipate pathway. Nichols NN; Harwood CS J Bacteriol; 1995 Dec; 177(24):7033-40. PubMed ID: 8522507 [TBL] [Abstract][Full Text] [Related]
7. Catabolism of benzoate and monohydroxylated benzoates by Amycolatopsis and Streptomyces spp. Grund E; Knorr C; Eichenlaub R Appl Environ Microbiol; 1990 May; 56(5):1459-64. PubMed ID: 2339895 [TBL] [Abstract][Full Text] [Related]
8. Regulation of phenylalanine ammonia lyase in Rhodotorula glutinis. Kane JF; Fiske MJ J Bacteriol; 1985 Mar; 161(3):963-6. PubMed ID: 4038704 [TBL] [Abstract][Full Text] [Related]
9. New aerobic benzoate oxidation pathway via benzoyl-coenzyme A and 3-hydroxybenzoyl-coenzyme A in a denitrifying Pseudomonas sp. Altenschmidt U; Oswald B; Steiner E; Herrmann H; Fuchs G J Bacteriol; 1993 Aug; 175(15):4851-8. PubMed ID: 8335640 [TBL] [Abstract][Full Text] [Related]
10. Genome-wide investigation and functional characterization of the beta-ketoadipate pathway in the nitrogen-fixing and root-associated bacterium Pseudomonas stutzeri A1501. Li D; Yan Y; Ping S; Chen M; Zhang W; Li L; Lin W; Geng L; Liu W; Lu W; Lin M BMC Microbiol; 2010 Feb; 10():36. PubMed ID: 20137101 [TBL] [Abstract][Full Text] [Related]
11. Catabolism of L-tyrosine in Trichosporon cutaneum. Sparnins VL; Burbee DG; Dagley S J Bacteriol; 1979 May; 138(2):425-30. PubMed ID: 571434 [TBL] [Abstract][Full Text] [Related]
12. Cytochrome P450rm from Rhodotorula minuta catalyzes 4-hydroxylation of benzoate. Fukuda H; Nakamura K; Sukita E; Ogawa T; Fujii T J Biochem; 1996 Feb; 119(2):314-8. PubMed ID: 8882724 [TBL] [Abstract][Full Text] [Related]
13. Regulation of aromatic metabolism in fungi: selection of mutants of the yeast Rhodotorula mucilaginosa with nystatin. Cook KA J Gen Microbiol; 1974 Nov; 85(1):29-36. PubMed ID: 4474355 [No Abstract] [Full Text] [Related]
14. Key aromatic-ring-cleaving enzyme, protocatechuate 3,4-dioxygenase, in the ecologically important marine Roseobacter lineage. Buchan A; Collier LS; Neidle EL; Moran MA Appl Environ Microbiol; 2000 Nov; 66(11):4662-72. PubMed ID: 11055908 [TBL] [Abstract][Full Text] [Related]
15. Transcriptional cross-regulation of the catechol and protocatechuate branches of the beta-ketoadipate pathway contributes to carbon source-dependent expression of the Acinetobacter sp. strain ADP1 pobA gene. Brzostowicz PC; Reams AB; Clark TJ; Neidle EL Appl Environ Microbiol; 2003 Mar; 69(3):1598-606. PubMed ID: 12620848 [TBL] [Abstract][Full Text] [Related]
16. Catabolism of aromatic acids in Trichosporon cutaneum. Anderson JJ; Dagley S J Bacteriol; 1980 Feb; 141(2):534-43. PubMed ID: 7364712 [TBL] [Abstract][Full Text] [Related]
17. Novel nuclear magnetic resonance spectroscopy methods demonstrate preferential carbon source utilization by Acinetobacter calcoaceticus. Gaines GL; Smith L; Neidle EL J Bacteriol; 1996 Dec; 178(23):6833-41. PubMed ID: 8955304 [TBL] [Abstract][Full Text] [Related]
18. Properties of salicylate hydroxylase and hydroxyquinol 1,2-dioxygenase purified from Trichosporon cutaneum. Sze IS; Dagley S J Bacteriol; 1984 Jul; 159(1):353-9. PubMed ID: 6539772 [TBL] [Abstract][Full Text] [Related]
19. Key enzymes of the protocatechuate branch of the beta-ketoadipate pathway for aromatic degradation in Corynebacterium glutamicum. Shen X; Liu S Sci China C Life Sci; 2005 Jun; 48(3):241-9. PubMed ID: 16092756 [TBL] [Abstract][Full Text] [Related]
20. Regulation of aromatic metabolism in the fungi: metabolic control of the 3-oxoadipate pathway in the yeast Rhodotorula mucilaginosa. Cook KA; Cain RB J Gen Microbiol; 1974 Nov; 85(1):37-50. PubMed ID: 4474356 [No Abstract] [Full Text] [Related] [Next] [New Search]