These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 6542105)

  • 1. Extracellular compartments in matrix morphogenesis: collagen fibril, bundle, and lamellar formation by corneal fibroblasts.
    Birk DE; Trelstad RL
    J Cell Biol; 1984 Dec; 99(6):2024-33. PubMed ID: 6542105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extracellular compartments in tendon morphogenesis: collagen fibril, bundle, and macroaggregate formation.
    Birk DE; Trelstad RL
    J Cell Biol; 1986 Jul; 103(1):231-40. PubMed ID: 3722266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell-independent matrix configuration in early corneal development.
    Young RD; Knupp C; Koudouna E; Ralphs JR; Ma Y; Lwigale PY; Jester JV; Quantock AJ
    Exp Eye Res; 2019 Oct; 187():107772. PubMed ID: 31445001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fibroblasts create compartments in the extracellular space where collagen polymerizes into fibrils and fibrils associate into bundles.
    Birk DE; Trelstad RL
    Ann N Y Acad Sci; 1985; 460():258-66. PubMed ID: 3868950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Collagen fibril assembly by corneal fibroblasts in three-dimensional collagen gel cultures: small-diameter heterotypic fibrils are deposited in the absence of keratan sulfate proteoglycan.
    Doane KJ; Babiarz JP; Fitch JM; Linsenmayer TF; Birk DE
    Exp Cell Res; 1992 Sep; 202(1):113-24. PubMed ID: 1511726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human corneal fibrillogenesis. Collagen V structural analysis and fibrillar assembly by stromal fibroblasts in culture.
    Ruggiero F; Burillon C; Garrone R
    Invest Ophthalmol Vis Sci; 1996 Aug; 37(9):1749-60. PubMed ID: 8759342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The fibroblast in morphogenesis and fibrosis: cell topography and surface-related functions.
    Trelstad RL; Birk DE
    Ciba Found Symp; 1985; 114():4-19. PubMed ID: 3851725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lateral growth limitation of corneal fibrils and their lamellar stacking depend on covalent collagen cross-linking by transglutaminase-2 and lysyl oxidases, respectively.
    Wang L; Uhlig PC; Eikenberry EF; Robenek H; Bruckner P; Hansen U
    J Biol Chem; 2014 Jan; 289(2):921-9. PubMed ID: 24265319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Topographies of extracytoplasmic compartments in developing chick tendon fibroblasts.
    Yang GC; Birk DE
    J Ultrastruct Mol Struct Res; 1986; 97(1-3):238-48. PubMed ID: 3453371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The extracellular matrix of the developing cornea: diversity, deposition and function.
    Bard JB; Bansal MK; Ross AS
    Development; 1988; 103 Suppl():195-205. PubMed ID: 3250851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Collagen fibril assembly and deposition in the developing dermis: segmental deposition in extracellular compartments.
    Ploetz C; Zycband EI; Birk DE
    J Struct Biol; 1991 Feb; 106(1):73-81. PubMed ID: 2059553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Keratan sulfate glycosaminoglycan and the association with collagen fibrils in rudimentary lamellae in the developing avian cornea.
    Young RD; Gealy EC; Liles M; Caterson B; Ralphs JR; Quantock AJ
    Invest Ophthalmol Vis Sci; 2007 Jul; 48(7):3083-8. PubMed ID: 17591877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphogenesis of the collagenous stroma in the chick cornea.
    Trelstad RL; Coulombre AJ
    J Cell Biol; 1971 Sep; 50(3):840-58. PubMed ID: 4329158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extracellular matrix production by embryonic epithelium cultured on type IV collagen. Deposition of a primary corneal stroma-like structure containing large irregular type I fibrils without type II collagen.
    Ruggiero F; Barge A; Coll JL; Garrone R
    Cell Differ Dev; 1990 Feb; 29(2):95-104. PubMed ID: 2182182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic three-dimensional visualization of collagen matrix remodeling and cytoskeletal organization in living corneal fibroblasts.
    Petroll WM; Cavanagh HD; Jester JV
    Scanning; 2004; 26(1):1-10. PubMed ID: 15000286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The morphogenesis of the chick primary corneal stroma. I. New observations on collagen organization in vivo help explain stromal deposition and growth.
    Bard JB; Bansal MK
    Development; 1987 May; 100(1):135-45. PubMed ID: 3652963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional aspects of matrix assembly by cells in the developing cornea.
    Young RD; Knupp C; Pinali C; Png KM; Ralphs JR; Bushby AJ; Starborg T; Kadler KE; Quantock AJ
    Proc Natl Acad Sci U S A; 2014 Jan; 111(2):687-92. PubMed ID: 24385584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Collagen fibril assembly in the developing avian primary corneal stroma.
    Fitch JM; Linsenmayer CM; Linsenmayer TF
    Invest Ophthalmol Vis Sci; 1994 Mar; 35(3):862-9. PubMed ID: 8125749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Does chondroitin sulfate have a role to play in the morphogenesis of the chick primary corneal stroma?
    Bansal MK; Ross AS; Bard JB
    Dev Biol; 1989 May; 133(1):185-95. PubMed ID: 2495996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Altered corneal stromal matrix organization is associated with mucopolysaccharidosis I, III and VI.
    Alroy J; Haskins M; Birk DE
    Exp Eye Res; 1999 May; 68(5):523-30. PubMed ID: 10328965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.