These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
57 related articles for article (PubMed ID: 6543242)
1. A spectroscopic technique for evaluating sterol-aponin interactions and implications for management of Ptychodiscus brevis red tides. Barltrop J; Martin DF Microbios; 1984; 41(163):23-9. PubMed ID: 6543242 [TBL] [Abstract][Full Text] [Related]
2. Effect of aponin, a substance from a green alga Nannochloris species, on the spore germination of two fungi. Halvorson MJ; TeStrake D; Martin DF Microbios; 1984; 41(164):105-13. PubMed ID: 6530959 [TBL] [Abstract][Full Text] [Related]
3. Studies of the effect of Psi-APONIN from Nannochloris sp. on the Florida red tide organism Karenia brevis. Derby ML; Galliano M; Krzanowski JJ; Martin DF Toxicon; 2003 Feb; 41(2):245-9. PubMed ID: 12565744 [TBL] [Abstract][Full Text] [Related]
4. Lysis of Gymnodinium breve by cultures of the green alga Nannochloris eucaryotum. Pérez E; Sawyers WG; Martin DF Cytobios; 2001; 104(405):25-31. PubMed ID: 11219728 [TBL] [Abstract][Full Text] [Related]
5. Critical micelle concentrations of allelopathic substances produced by Nannochloris oculata which affect a red tide organism, Gymnodinium breve. Pérez E; Martin DF Cytobios; 2001; 106(413):163-70. PubMed ID: 11523742 [TBL] [Abstract][Full Text] [Related]
6. Bioassays of APONIN-3 and -4 with rabbit erythrocytes. Derby M; Martin DF Cytobios; 2000; 102(400):115-8. PubMed ID: 10885508 [TBL] [Abstract][Full Text] [Related]
7. The influence of Gomphosphaeria aponina on the growth of Gymnodinium breve and the effect of aponin on the ichthyotoxicity of Gymnodinium breve. McCoy LF; Martin DF Chem Biol Interact; 1977 Apr; 17(1):17-24. PubMed ID: 406055 [TBL] [Abstract][Full Text] [Related]
8. Relationship between sterol/steroid structure and participation in ordered lipid domains (lipid rafts): implications for lipid raft structure and function. Wang J; Megha ; London E Biochemistry; 2004 Feb; 43(4):1010-8. PubMed ID: 14744146 [TBL] [Abstract][Full Text] [Related]
9. Novel sterol transformations promoted by Saccharomyces cerevisiae strain GL7: evidence for 9 beta, 19-cyclopropyl to 9(11)-isomerization and for 14-demethylation to 8(14)-sterols. Venkatramesh M; Nes WD Arch Biochem Biophys; 1995 Dec; 324(1):189-99. PubMed ID: 7503554 [TBL] [Abstract][Full Text] [Related]
10. Short-term effects on Artemia salina of aponin and Gomphosphaeria aponina in unialgal cultures and in mixed cultures with gymnodinium breve. Eng-Wilmot DL; Martin DF J Pharm Sci; 1979 Aug; 68(8):963-6. PubMed ID: 113525 [TBL] [Abstract][Full Text] [Related]
11. Real-time monitoring of the membrane-binding and insertion properties of the cholesterol-dependent cytolysin anthrolysin O from Bacillus anthracis. Cocklin S; Jost M; Robertson NM; Weeks SD; Weber HW; Young E; Seal S; Zhang C; Mosser E; Loll PJ; Saunders AJ; Rest RF; Chaiken IM J Mol Recognit; 2006; 19(4):354-62. PubMed ID: 16775845 [TBL] [Abstract][Full Text] [Related]
12. Interactions between membrane sterols and phospholipids in model mammalian and fungi cellular membranes--a Langmuir monolayer study. Miñones J; Pais S; Miñones J; Conde O; Dynarowicz-Łatka P Biophys Chem; 2009 Mar; 140(1-3):69-77. PubMed ID: 19073357 [TBL] [Abstract][Full Text] [Related]
13. Differential effects of cholesterol, ergosterol and lanosterol on a dipalmitoyl phosphatidylcholine membrane: a molecular dynamics simulation study. Cournia Z; Ullmann GM; Smith JC J Phys Chem B; 2007 Feb; 111(7):1786-801. PubMed ID: 17261058 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of cholesterol biosynthesis by Delta22-unsaturated phytosterols via competitive inhibition of sterol Delta24-reductase in mammalian cells. Fernández C; Suárez Y; Ferruelo AJ; Gómez-Coronado D; Lasunción MA Biochem J; 2002 Aug; 366(Pt 1):109-19. PubMed ID: 12162789 [TBL] [Abstract][Full Text] [Related]
15. Modulation of amphotericin B membrane interaction by cholesterol and ergosterol--a molecular dynamics study. Czub J; Baginski M J Phys Chem B; 2006 Aug; 110(33):16743-53. PubMed ID: 16913814 [TBL] [Abstract][Full Text] [Related]
16. [Relationship between aeration and sterol distribution in yeasts]. Gal'tsova RD; Vakina IP Mikrobiologiia; 1981; 50(1):84-9. PubMed ID: 7012556 [TBL] [Abstract][Full Text] [Related]
17. [A comparative study on sterols of ethanol extract and water extract from Hericium erinaceus]. Li JL; Lu L; Dai CC; Chen K; Qiu JY Zhongguo Zhong Yao Za Zhi; 2001 Dec; 26(12):831-4. PubMed ID: 12776329 [TBL] [Abstract][Full Text] [Related]
18. Final report of the amended safety assessment of PEG-5, -10, -16, -25, -30, and -40 soy sterol. Int J Toxicol; 2004; 23 Suppl 2():23-47. PubMed ID: 15513823 [TBL] [Abstract][Full Text] [Related]
19. Red cell and plasma plant sterols are related during consumption of plant stanol and sterol ester spreads in children with hypercholesterolemia. Ketomäki AM; Gylling H; Antikainen M; Siimes MA; Miettinen TA J Pediatr; 2003 May; 142(5):524-31. PubMed ID: 12756385 [TBL] [Abstract][Full Text] [Related]
20. Macrophage 3-hydroxy-3-methylglutaryl coenzyme a reductase activity in sitosterolemia: effects of increased cellular cholesterol and sitosterol concentrations. Nguyen LB; Salen G; Shefer S; Tint GS; Ruiz F Metabolism; 2001 Oct; 50(10):1224-9. PubMed ID: 11586498 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]