These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 6543903)

  • 1. Acetylcholine sensitivity in replicating satellite cells.
    Eusebi F; Molinaro M
    Muscle Nerve; 1984; 7(6):488-92. PubMed ID: 6543903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced acetylcholine sensitivity in dystrophic mouse myotubes in vitro.
    Cossu G; Eusebi F; Molinaro M
    Muscle Nerve; 1984 Jan; 7(1):73-6. PubMed ID: 6700633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spontaneous opening of the acetylcholine receptor channel in developing muscle cells from normal and dystrophic mice.
    Franco-Obregón A; Lansman JB
    J Neurosci Res; 1995 Nov; 42(4):452-8. PubMed ID: 8568931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A preparation for studying dystrophic avian muscle and neuromuscular junctions.
    Gunther JS; Letinsky MS
    Muscle Nerve; 1982 Jan; 5(1):7-13. PubMed ID: 7057810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane alterations in skeletal muscle fibers of dystrophic mice.
    Kerr LM; Sperelakis N
    Muscle Nerve; 1983 Jan; 6(1):3-13. PubMed ID: 6302500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single channel properties of synaptic acetylcholine receptors in dystrophic fibers.
    Brennan C; Henderson LP
    Muscle Nerve; 1993 May; 16(5):513-9. PubMed ID: 8390607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fusion-independent expression of functional ACh receptors in mouse mesoangioblast stem cells contacting muscle cells.
    Grassi F; Pagani F; Spinelli G; De Angelis L; Cossu G; Eusebi F
    J Physiol; 2004 Oct; 560(Pt 2):479-89. PubMed ID: 15319417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro characteristics of normal and dystrophic skeletal muscle from dogs.
    Valentine BA; Chandler SK; Cummings JF; Cooper BJ
    Am J Vet Res; 1991 Jan; 52(1):104-7. PubMed ID: 2021236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of digoxin on resting membrane potentials of skeletal muscles in dystrophic mice.
    Saito K; Ohkura H; Tanaka H; Kashima T; Katanasako H; Kanehisa T
    Jpn J Exp Med; 1980 Jun; 50(3):179-82. PubMed ID: 7431675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of altered metabolism (hypothyroidism) on muscle repair in the mdx dystrophic mouse.
    McIntosh LM; Pernitsky AN; Anderson JE
    Muscle Nerve; 1994 Apr; 17(4):444-53. PubMed ID: 8170492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different time courses of reduction in muscular potentials to moderate frequency stimulation in dystrophic and normal mice.
    Watanabe K; Uramoto I; Totsuka T
    Nihon Seirigaku Zasshi; 1982; 44(3):99-102. PubMed ID: 7097610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characteristics of myoblasts isolated from golden Syrian and dystrophic (strain CHF-146) hamsters.
    Ng SK; Lewis KE
    Can J Biochem Cell Biol; 1985 Jul; 63(7):730-6. PubMed ID: 2412676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth of neonatal hamster skeletal muscle in culture.
    Tautu C; Jasmin G; Solymoss BC
    Muscle Nerve; 1981; 4(2):149-54. PubMed ID: 7207505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acetylcholine-sensitivity in fast and slow twitch muscle of normal and dystrophic (C57 BL/6J dy2J/dy2J) mice.
    Noireaud J; Léoty C; Schmidt H
    Pflugers Arch; 1985 May; 404(2):185-9. PubMed ID: 4011409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro differentiation of satellite cells isolated from normal and dystrophic mammalian muscles. A comparison with embryonic myogenic cells.
    Cossu G; Zani B; Coletta M; Bouchè M; Pacifici M; Molinaro M
    Cell Differ; 1980 Dec; 9(6):357-68. PubMed ID: 7438216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changing patterns in muscular potentials at MG and SOL muscles of dystrophic and normal mice due to prolonged stimulation.
    Uramoto I; Watanabe K; Totsuka T
    Nihon Seirigaku Zasshi; 1984; 46(3):99-102. PubMed ID: 6747908
    [No Abstract]   [Full Text] [Related]  

  • 17. Development of a clonal myogenic cell line with unusual biochemical properties.
    Brandt BL; Kimes BW; Klier FG
    J Cell Physiol; 1976 Jul; 88(3):255-75. PubMed ID: 178672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Liposome-delivered phosphatidylcholine enhances the acetylcholine sensitivity of dystrophic mouse myotubes.
    Eusebi F; Cossu G; Molinaro M; Giacomoni D
    Biochim Biophys Acta; 1986 Feb; 855(1):197-9. PubMed ID: 3942742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Satellite cells from dystrophic (mdx) mice display accelerated differentiation in primary cultures and in isolated myofibers.
    Yablonka-Reuveni Z; Anderson JE
    Dev Dyn; 2006 Jan; 235(1):203-12. PubMed ID: 16258933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prevention of muscle fibrosis and improvement in muscle performance in the mdx mouse by halofuginone.
    Turgeman T; Hagai Y; Huebner K; Jassal DS; Anderson JE; Genin O; Nagler A; Halevy O; Pines M
    Neuromuscul Disord; 2008 Nov; 18(11):857-68. PubMed ID: 18672370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.