BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 6543919)

  • 1. Congenital canine myasthenia gravis: I. Deficient junctional acetylcholine receptors.
    Oda K; Lambert EH; Lennon VA; Palmer AC
    Muscle Nerve; 1984; 7(9):705-16. PubMed ID: 6543919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Congenital canine myasthenia gravis: II. Acetylcholine receptor metabolism.
    Oda K; Lennon VA; Lambert EH; Palmer AC
    Muscle Nerve; 1984; 7(9):717-24. PubMed ID: 6543920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Congenital myasthenia: end-plate acetylcholine receptors and electrophysiology in five cases.
    Vincent A; Cull-Candy SG; Newsom-Davis J; Trautmann A; Molenaar PC; Polak RL
    Muscle Nerve; 1981; 4(4):306-18. PubMed ID: 7254233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Congenital myasthenic syndromes: II. Syndrome attributed to abnormal interaction of acetylcholine with its receptor.
    Uchitel O; Engel AG; Walls TJ; Nagel A; Atassi MZ; Bril V
    Muscle Nerve; 1993 Dec; 16(12):1293-301. PubMed ID: 8232384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Congenital myasthenic syndromes: I. Deficiency and short open-time of the acetylcholine receptor.
    Engel AG; Nagel A; Walls TJ; Harper CM; Waisburg HA
    Muscle Nerve; 1993 Dec; 16(12):1284-92. PubMed ID: 8232383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acetylcholine release in diaphragm of rats with chronic experimental autoimmune myasthenia gravis.
    Kelly JJ; Lambert EH; Lennon VA
    Ann Neurol; 1978 Jul; 4(1):67-72. PubMed ID: 211931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-function correlations in myasthenia gravis and a new myasthenic syndrome.
    Engel AG; Lambert EH
    Electroencephalogr Clin Neurophysiol Suppl; 1978; (34):469-77. PubMed ID: 220007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Refractoriness to a second episode of experimental myasthenia gravis. Correlation with AChR concentration and morphologic appearance of the postsynaptic membrane.
    Corey AL; Richman DP; Agius MA; Wollmann RL
    J Immunol; 1987 May; 138(10):3269-75. PubMed ID: 3494763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A myasthenia gravis plasma immunoglobulin reduces miniature endplate potentials at human endplates in vitro.
    Burges J; Wray DW; Pizzighella S; Hall Z; Vincent A
    Muscle Nerve; 1990 May; 13(5):407-13. PubMed ID: 2345558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental autoimmune myasthenia gravis: the rabbit as an animal model.
    Eldefrawi ME
    Fed Proc; 1978 Dec; 37(14):2823-7. PubMed ID: 720635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Passive transfer of seronegative myasthenia gravis to mice.
    Burges J; Vincent A; Molenaar PC; Newsom-Davis J; Peers C; Wray D
    Muscle Nerve; 1994 Dec; 17(12):1393-400. PubMed ID: 7969240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acetylcholine release in myasthenia gravis: regulation at single end-plate level.
    Plomp JJ; Van Kempen GT; De Baets MB; Graus YM; Kuks JB; Molenaar PC
    Ann Neurol; 1995 May; 37(5):627-36. PubMed ID: 7755358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anti-MuSK patient antibodies disrupt the mouse neuromuscular junction.
    Cole RN; Reddel SW; Gervásio OL; Phillips WD
    Ann Neurol; 2008 Jun; 63(6):782-9. PubMed ID: 18384168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new myasthenic syndrome with end-plate acetylcholinesterase deficiency, small nerve terminals, and reduced acetylcholine release.
    Engel AG; Lambert EH; Gomez MR
    Ann Neurol; 1977 Apr; 1(4):315-30. PubMed ID: 214017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Newly recognized congenital myasthenic syndrome associated with high conductance and fast closure of the acetylcholine receptor channel.
    Engel AG; Uchitel OD; Walls TJ; Nagel A; Harper CM; Bodensteiner J
    Ann Neurol; 1993 Jul; 34(1):38-47. PubMed ID: 7685992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distribution of acetylcholine receptors at frog neuromuscular junctions with a discussion of some physiological implications.
    Matthews-Bellinger J; Salpeter MM
    J Physiol; 1978 Jun; 279():197-213. PubMed ID: 307600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endplate contributions to the safety factor for neuromuscular transmission.
    Ruff RL
    Muscle Nerve; 2011 Dec; 44(6):854-61. PubMed ID: 22102453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrastructure of motor endplates in canine congenital myasthenia gravis.
    Wilkes MK; McKerrell RE; Patterson RC; Palmer AC
    J Comp Pathol; 1987 May; 97(3):247-56. PubMed ID: 3611429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Congenital myasthenia: further evidence of disease heterogeneity.
    Lecky BR; Morgan-Hughes JA; Murray NM; Landon DN; Wray D; Prior C
    Muscle Nerve; 1986; 9(3):233-42. PubMed ID: 3010100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A non-immunogenic myasthenia gravis model and its application in a study of transsynaptic regulation at the neuromuscular junction.
    Molenaar PC; Oen BS; Plomp JJ; Van Kempen GT; Jennekens FG; Hesselmans LF
    Eur J Pharmacol; 1991 Apr; 196(1):93-101. PubMed ID: 1874282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.