These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 6544589)

  • 1. Potential application of NMR spectroscopy for predicting rate of transformation of chemicals in environmental processes. Correlation between chemical shift and reactivity of carbon atoms involved in solvolysis processes.
    Tosato ML; Cesareo D
    Ann Ist Super Sanita; 1983; 19(4):649-53. PubMed ID: 6544589
    [No Abstract]   [Full Text] [Related]  

  • 2. Carbon-13 NMR spectroscopy and its application to biological systems.
    Grutzner JB
    Lloydia; 1972 Dec; 35(4):375-98. PubMed ID: 4267251
    [No Abstract]   [Full Text] [Related]  

  • 3. Improvements in the two-dimensional nuclear magnetic resonance spectroscopy of humic substances.
    Simpson AJ; Salloum MJ; Kingery WL; Hatcher PG
    J Environ Qual; 2002; 31(2):388-92. PubMed ID: 11931425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The development of cryoprobe nuclear magnetic resonance spectroscopy for the rapid detection of organic contaminants in potable water.
    Charlton AJ; Donarski JA; Jones SA; May BD; Clive Thompson K
    J Environ Monit; 2006 Nov; 8(11):1106-10. PubMed ID: 17075616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of landuse on soil organic carbon chemistry and sorption of pesticides and metabolites.
    Oliver DP; Baldock JA; Kookana RS; Grocke S
    Chemosphere; 2005 Jul; 60(4):531-41. PubMed ID: 15950045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical shift correlations from hyperpolarized NMR by off-resonance decoupling.
    Bowen S; Zeng H; Hilty C
    Anal Chem; 2008 Aug; 80(15):5794-8. PubMed ID: 18605696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Volatilisation of crop protection chemicals from crop and soil surfaces under controlled conditions--prediction of volatile losses from physico-chemical properties.
    Guth JA; Reischmann FJ; Allen R; Arnold D; Hassink J; Leake CR; Skidmore MW; Reeves GL
    Chemosphere; 2004 Nov; 57(8):871-87. PubMed ID: 15488578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solid-state carbon-13 nuclear magnetic resonance of humic acids at high magnetic field strengths.
    Dria KJ; Sachleben JR; Hatcher PG
    J Environ Qual; 2002; 31(2):393-401. PubMed ID: 11931426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of solvent effects on protonation using NMR spectroscopy: implication in salt formation.
    Kim H; Gao J; Burgess DJ
    Int J Pharm; 2009 Jul; 377(1-2):105-11. PubMed ID: 19463928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of carbon-13 NMR chemical shift of alkanes with rooted path vector.
    Zhou LP; Sun LL; Yu Y; Lu W; Li ZL
    J Mol Graph Model; 2006 Nov; 25(3):333-9. PubMed ID: 16510301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An NMR shielding model for protons above the plane of a carbonyl group.
    Martin NH; Allen NW; Brown JD; Kmiec DM; Vo L
    J Mol Graph Model; 2003 Nov; 22(2):127-31. PubMed ID: 12932783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electronic structure and solvatochromism of merocyanines NMR spectroscopic point of view.
    Kulinich AV; Ishchenko AA; Groth UM
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Sep; 68(1):6-14. PubMed ID: 17188560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Protonation of amino and hydroxypyrimidines. NMR-spectra and structures of mono and dications].
    Wagner R; von Philipsborn W
    Helv Chim Acta; 1970; 53(2):299-320. PubMed ID: 5435977
    [No Abstract]   [Full Text] [Related]  

  • 14. Changes in the organic composition of wastewater during biological treatment as studied by NMR and IR spectroscopies.
    Dignac MF; Ginestet P; Bruchet A; Audic JM; Derenne S; Largeau C
    Water Sci Technol; 2001; 43(2):51-8. PubMed ID: 11380205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A multi-standard approach for GIAO (13)C NMR calculations.
    Sarotti AM; Pellegrinet SC
    J Org Chem; 2009 Oct; 74(19):7254-60. PubMed ID: 19725561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new way to use solid-state carbon-13 nuclear magnetic resonance spectroscopy to study the sorption of organic compounds to soil organic matter.
    Smernik RJ
    J Environ Qual; 2005; 34(4):1194-204. PubMed ID: 15942038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 1H and 13C NMR data to aid the identification and quantification of residual solvents by NMR spectroscopy.
    Jones IC; Sharman GJ; Pidgeon J
    Magn Reson Chem; 2005 Jun; 43(6):497-509. PubMed ID: 15809983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative structure spectroscopy relationships of carbon-13 nuclear magnetic resonance chemical shifts of steroids.
    Tong J; Liu S; Zhou P; Zhang S; Li SZ
    J Mol Graph Model; 2007 Jul; 26(1):86-92. PubMed ID: 17204441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. B. Medium effects on the nuclear magnetic resonance spectra of purines. ANL-7535.
    Bell CL; Hruska FE; Danyluk SS
    ANL Rep; 1968 Dec; ():223-6. PubMed ID: 5307196
    [No Abstract]   [Full Text] [Related]  

  • 20. Comparison of different theory models and basis sets in the calculation of 13C NMR chemical shifts of natural products.
    Cimino P; Gomez-Paloma L; Duca D; Riccio R; Bifulco G
    Magn Reson Chem; 2004 Oct; 42 Spec no():S26-33. PubMed ID: 15366038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.