These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 6544628)
21. Magnetic modulation of release of macromolecules from polymers. Hsieh DS; Langer R; Folkman J Proc Natl Acad Sci U S A; 1981 Mar; 78(3):1863-7. PubMed ID: 6940193 [TBL] [Abstract][Full Text] [Related]
22. Spatiotemporal release of VEGF from biodegradable polylactic-co-glycolic acid microspheres induces angiogenesis in chick chorionic allantoic membrane assay. Qutachi O; Bullock AJ; Gigliobianco G; MacNeil S Int J Pharm; 2019 Apr; 561():236-243. PubMed ID: 30853484 [TBL] [Abstract][Full Text] [Related]
23. Biodegradable polymers in controlled drug delivery. Heller J Crit Rev Ther Drug Carrier Syst; 1984; 1(1):39-90. PubMed ID: 6400195 [TBL] [Abstract][Full Text] [Related]
24. Low melting point amphiphilic microspheres for delivery of bone morphogenetic protein-6 and transforming growth factor-β3 in a hydrogel matrix. Sukarto A; Amsden BG J Control Release; 2012 Feb; 158(1):53-62. PubMed ID: 22037107 [TBL] [Abstract][Full Text] [Related]
25. Controlled dual drug release by coaxial electrospun fibers - Impact of the core fluid on drug encapsulation and release. Wang J; Windbergs M Int J Pharm; 2019 Feb; 556():363-371. PubMed ID: 30572080 [TBL] [Abstract][Full Text] [Related]
26. THE INTERACTION BETWEEN POLYSACCHARIDES AND OTHER MACROMOLECULES. VII. THE EFFECT OF VARIOUS POLYMERS ON THE SEDIMENTATION RATES OF SERUM ALBUMIN AND ALPHA-CRYSTALLIN. LAURENT TC; PERSSON H Biochim Biophys Acta; 1964 Jul; 83():141-7. PubMed ID: 14200679 [No Abstract] [Full Text] [Related]
27. Enhanced angiogenic efficacy through controlled and sustained delivery of FGF-2 and G-CSF from fibrin hydrogels containing ionic-albumin microspheres. Layman H; Li X; Nagar E; Vial X; Pham SM; Andreopoulos FM J Biomater Sci Polym Ed; 2012; 23(1-4):185-206. PubMed ID: 21192837 [TBL] [Abstract][Full Text] [Related]
28. Controlled delivery systems for proteins based on poly(lactic/glycolic acid) microspheres. Cohen S; Yoshioka T; Lucarelli M; Hwang LH; Langer R Pharm Res; 1991 Jun; 8(6):713-20. PubMed ID: 2062800 [TBL] [Abstract][Full Text] [Related]
29. Delivery systems for angiogenesis stimulators and inhibitors. Langer R EXS; 1992; 61():327-30. PubMed ID: 1377552 [TBL] [Abstract][Full Text] [Related]
30. Polymers for the controlled release of macromolecules: effect of molecular weight of ethylene-vinyl acetate copolymer. Hsu TT; Langer R J Biomed Mater Res; 1985 Apr; 19(4):445-60. PubMed ID: 4055827 [TBL] [Abstract][Full Text] [Related]
31. A real-time in vitro assay to evaluate the release of macromolecules from liposomes. Mujoo H; Reynolds JNJ; Tucker IG Drug Test Anal; 2018 Jun; 10(6):1025-1032. PubMed ID: 29088510 [TBL] [Abstract][Full Text] [Related]
32. Osmotic pressure driven protein release from viscous liquid, hydrophobic polymers based on 5-ethylene ketal ε-caprolactone: potential and mechanism. Babasola IO; Zhang W; Amsden BG Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt A):765-72. PubMed ID: 23665446 [TBL] [Abstract][Full Text] [Related]
33. Protein release from poly(epsilon-caprolactone) microspheres prepared by melt encapsulation and solvent evaporation techniques: a comparative study. Jameela SR; Suma N; Jayakrishnan A J Biomater Sci Polym Ed; 1997; 8(6):457-66. PubMed ID: 9151193 [TBL] [Abstract][Full Text] [Related]
34. Immobilization of hormones for drug targeting. Tulsani NB; Kumar A; Pasha Q; Kumar H; Sarma UP Artif Cells Blood Substit Immobil Biotechnol; 2000 Nov; 28(6):503-19. PubMed ID: 11063092 [TBL] [Abstract][Full Text] [Related]
35. Polymeric nanoparticles as drug controlled release systems: a new formulation strategy for drugs with small or large molecular weight. Leo E; Scatturin A; Vighi E; Dalpiaz A J Nanosci Nanotechnol; 2006; 6(9-10):3070-9. PubMed ID: 17048520 [TBL] [Abstract][Full Text] [Related]
36. Development and in vivo evaluation of chitosan nanoparticles for the oral delivery of albumin. Nashaat D; Elsabahy M; El-Sherif T; Hamad MA; El-Gindy GA; Ibrahim EH Pharm Dev Technol; 2019 Mar; 24(3):329-337. PubMed ID: 29781756 [TBL] [Abstract][Full Text] [Related]
37. Non-covalent surface engineering of an alloplastic polymeric bone graft material for controlled protein release. Diniz Oliveira HF; Weiner AA; Majumder A; Shastri VP J Control Release; 2008 Mar; 126(3):237-45. PubMed ID: 18241948 [TBL] [Abstract][Full Text] [Related]
38. 1994 Whitaker Lecture: polymers for drug delivery and tissue engineering. Langer R Ann Biomed Eng; 1995; 23(2):101-11. PubMed ID: 7605047 [TBL] [Abstract][Full Text] [Related]
39. Prolonged immune response evoked by a single subcutaneous injection of microcapsules having a monophasic antigen release. Sah H; Chien YW J Pharm Pharmacol; 1996 Jan; 48(1):32-6. PubMed ID: 8722491 [TBL] [Abstract][Full Text] [Related]
40. Calcium alginate beads embedded in silk fibroin as 3D dual drug releasing scaffolds. Mandal BB; Kundu SC Biomaterials; 2009 Oct; 30(28):5170-7. PubMed ID: 19552952 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]