These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 6544787)

  • 21. Tissue reaction and material characteristics of four bone substitutes.
    Jensen SS; Aaboe M; Pinholt EM; Hjørting-Hansen E; Melsen F; Ruyter IE
    Int J Oral Maxillofac Implants; 1996; 11(1):55-66. PubMed ID: 8820123
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrical stimulation of bone and its implications for endosseous dental implantation.
    Steiner M; Ramp WK
    J Oral Implantol; 1990; 16(1):20-7. PubMed ID: 2074588
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The response of non-traumatized bone to direct current.
    Friedenberg ZB; Zemsky LM; Pollis RP; Brighton CT
    J Bone Joint Surg Am; 1974 Jul; 56(5):1023-30. PubMed ID: 4847224
    [No Abstract]   [Full Text] [Related]  

  • 24. The effects of varying current levels of electrical stimulation.
    Paterson DC; Carter RF; Tilbury RF; Ludbrook J; Savage JP
    Clin Orthop Relat Res; 1982 Sep; (169):303-12. PubMed ID: 6980765
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of poly(DTH carbonate), a tyrosine-derived degradable polymer, for orthopedic applications.
    Ertel SI; Kohn J; Zimmerman MC; Parsons JR
    J Biomed Mater Res; 1995 Nov; 29(11):1337-48. PubMed ID: 8582902
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biomechanical behavior of hydroxyapatite as bone substitute material in a loaded implant model. On the surface strain measurement and the maximum compression strength determination of material crash.
    Noro T; Itoh K
    Biomed Mater Eng; 1999; 9(5-6):319-24. PubMed ID: 10822487
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct current electrical stimulation of bone growth: review and current status.
    Weiss AB; Parsons JR; Alexander H
    J Med Soc N J; 1980 Jul; 77(7):523-6. PubMed ID: 6993685
    [No Abstract]   [Full Text] [Related]  

  • 28. Electrical stimulation of cardiac tissue by a bipolar electrode in a conductive bath.
    Latimer DC; Roth BJ
    IEEE Trans Biomed Eng; 1998 Dec; 45(12):1449-58. PubMed ID: 9835193
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Influence upon the longitudinal growth of extremities by direct current in animal experiments (author's transl)].
    Klems H
    Z Orthop Ihre Grenzgeb; 1981 Jun; 119(3):315-9. PubMed ID: 7269751
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanical factors in electrode-induced osteogenesis.
    Spadaro JA; Mino DE; Chase SE; Werner FW; Murray DG
    J Orthop Res; 1986; 4(1):37-44. PubMed ID: 3950807
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanical and electrical interactions in bone remodeling.
    Spadaro JA
    Bioelectromagnetics; 1997; 18(3):193-202. PubMed ID: 9096837
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrical stimulation with a needle-type electrode inserted into the optic nerve in rabbit eyes.
    Sakaguchi H; Fujikado T; Kanda H; Osanai M; Fang X; Nakauchi K; Ikuno Y; Kamei M; Ohji M; Yagi T; Tano Y
    Jpn J Ophthalmol; 2004; 48(6):552-7. PubMed ID: 15592779
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrical stimulation of the growth plate: a potential approach to an epiphysiodesis.
    Dodge GR; Bowen JR; Oh CW; Tokmakova K; Simon BJ; Aroojis A; Potter K
    Bioelectromagnetics; 2007 Sep; 28(6):463-70. PubMed ID: 17492657
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Two-year biocompatibility study of ORNL graphite.
    Kenner GH; Williams WS; Lovell JE; Eatherly WP
    J Biomed Mater Res; 1975 Jul; 9(4):67-72. PubMed ID: 1176511
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transretinal electrical stimulation with a suprachoroidal multichannel electrode in rabbit eyes.
    Sakaguchi H; Fujikado T; Fang X; Kanda H; Osanai M; Nakauchi K; Ikuno Y; Kamei M; Yagi T; Nishimura S; Ohji M; Yagi T; Tano Y
    Jpn J Ophthalmol; 2004; 48(3):256-61. PubMed ID: 15175918
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An in vitro study of electrical osteogenesis using direct and pulsating currents.
    Treharne RW; Brighton CT; Korostoff E; Pollack SR
    Clin Orthop Relat Res; 1979; (145):300-6. PubMed ID: 535287
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chronic neural stimulation with thin-film, iridium oxide electrodes.
    Weiland JD; Anderson DJ
    IEEE Trans Biomed Eng; 2000 Jul; 47(7):911-8. PubMed ID: 10916262
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Carbon fiber as an electrode material.
    Starrenburg AJ; Burger GC
    IEEE Trans Biomed Eng; 1982 May; 29(5):352-5. PubMed ID: 7084962
    [No Abstract]   [Full Text] [Related]  

  • 39. [The effect of direct current on bone tissue].
    Anisimov AI
    Biull Eksp Biol Med; 1974 Sep; 78(9):100-2. PubMed ID: 4462653
    [No Abstract]   [Full Text] [Related]  

  • 40. Thresholds for activation of rabbit retinal ganglion cells with a subretinal electrode.
    Jensen RJ; Rizzo JF
    Exp Eye Res; 2006 Aug; 83(2):367-73. PubMed ID: 16616739
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.