These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 6544788)

  • 1. Effects of immersion in cholesterol-lipid solution on the tensile and fatigue properties of elastomeric polymers for blood pump applications.
    Hayashi K; Matsuda T; Takano H; Umezu M
    J Biomed Mater Res; 1984 Oct; 18(8):939-51. PubMed ID: 6544788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical stability of elastomeric polymers for blood pump applications.
    Hayashi K; Takano H; Matsuda T; Umezu M
    J Biomed Mater Res; 1985 Feb; 19(2):179-93. PubMed ID: 4077879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of implantation on the mechanical properties of the polyurethane diaphragm of left ventricular assist devices.
    Hayashi K; Matsuda T; Takano H; Umezu M; Taenaka Y; Nakamura T
    Biomaterials; 1985 Mar; 6(2):82-8. PubMed ID: 4005358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of aggregation state of hard segment in segmented poly(urethaneureas) on their fatigue behavior after interaction with blood components.
    Takahara A; Tashita J; Kajiyama T; Takayanagi M
    J Biomed Mater Res; 1985 Jan; 19(1):13-34. PubMed ID: 4077870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of surface integrity on the fatigue life of thin flexing membranes.
    Sinnott MM; Hoeppner DW; Romney E; Dew PA
    ASAIO Trans; 1989; 35(3):687-90. PubMed ID: 2597564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface chemical analysis of Avcothane and Biomer by Fourier transform IR internal reflection spectroscopy.
    Sung CS; Hu CB; Merrill EW; Salzman EW
    J Biomed Mater Res; 1978 Nov; 12(6):791-804. PubMed ID: 739013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fatigue and hemocompatibility of polymer materials.
    Sevastianov VI; Parfeev VM
    Artif Organs; 1987 Feb; 11(1):20-5. PubMed ID: 3566579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Angular dependent ESCA and infrared studies of segmented polyurethanes.
    Grobe GL; Gardella JA; Hopson WL; McKenna WP; Eyring EM
    J Biomed Mater Res; 1987 Feb; 21(2):211-29. PubMed ID: 3818682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of blood compatible elastomers. II. Performance of Avcothane blood contact surfaces in experimental animal implantations.
    Nyilas E
    J Biomed Mater Res; 1972; 6(4):97-127. PubMed ID: 5045267
    [No Abstract]   [Full Text] [Related]  

  • 10. ESCA studies of surface chemical composition of segmented polyurethanes.
    Paik Sung CS; Hu CB
    J Biomed Mater Res; 1979 Mar; 13(2):161-71. PubMed ID: 429388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermally induced time dependence of mechanical properties in biomedical grade polyurethanes.
    Wilkes GL; Dziemianowicz TS; Ophir ZH; Artz E; Wildnauer R
    J Biomed Mater Res; 1979 Mar; 13(2):189-206. PubMed ID: 429390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. VAD Biomer blood sacs: mechanical tests and ultrastructural observations.
    Bedini R; Chistolini P; De Angelis G; Formisano G; Caiazza S
    Med Prog Technol; 1993; 19(2):83-8. PubMed ID: 8107668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface spectroscopic studies of Avcothane.
    Graham SW; Hercules DM
    J Biomed Mater Res; 1981 May; 15(3):349-61. PubMed ID: 7348270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of soft segment chemistry on the biostability of segmented polyurethanes. I. In vitro oxidation.
    Takahara A; Coury AJ; Hergenrother RW; Cooper SL
    J Biomed Mater Res; 1991 Mar; 25(3):341-56. PubMed ID: 2026639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyurethane elastomers as maxillofacial prosthetic materials.
    Goldberg AJ; Craig RG; Filisko FE
    J Dent Res; 1978 Apr; 57(4):563-9. PubMed ID: 280569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of blood-compatible elastomers. 3. Hematologic effects of Avcothane intra-aortic balloon pumps in cardiac patients.
    Nyilas E; Leinbach RC; Caulfield JB; Buckley MJ; Austen WG
    J Biomed Mater Res; 1972; 6(4):129-54. PubMed ID: 5045260
    [No Abstract]   [Full Text] [Related]  

  • 17. Comparative physical tests on segmented polyurethanes for cardiovascular applications.
    Tanzi MC; Ambrosio L; Nicolais L; Iannace S; Ghislanzoni L; Mambrito B
    Clin Mater; 1991; 8(1-2):57-64. PubMed ID: 10149149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-term in vivo biostability of poly(dimethylsiloxane)/poly(hexamethylene oxide) mixed macrodiol-based polyurethane elastomers.
    Simmons A; Hyvarinen J; Odell RA; Martin DJ; Gunatillake PA; Noble KR; Poole-Warren LA
    Biomaterials; 2004 Sep; 25(20):4887-900. PubMed ID: 15109849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of blood-compatible elastomers. V. Surface structure and blood compatibility of avcothane elastomers.
    Nyilas E; Ward RS
    J Biomed Mater Res; 1977 Jan; 11(1):69-84. PubMed ID: 845185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biostability and blood-contacting properties of sulfonate grafted polyurethane and Biomer.
    Wabers HD; McCoy TJ; Okkema AT; Hergenrother RW; Wolf MF; Cooper SL
    J Biomater Sci Polym Ed; 1992; 4(2):107-33. PubMed ID: 1486064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.