These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 6544789)

  • 1. Determination of extractable methylene dianiline in thermoplastic polyurethanes by HPLC.
    Mazzu AL; Smith CP
    J Biomed Mater Res; 1984 Oct; 18(8):961-8. PubMed ID: 6544789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation and elution of toxic compounds from sterilized medical products: methylenedianiline formation in polyurethane.
    Shintani H
    J Biomater Appl; 1995 Jul; 10(1):23-58. PubMed ID: 7473051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of 4,4'-methylenedianiline in polyurethane potting materials by either gamma-ray or autoclave sterilization.
    Shintani H; Nakamura A
    J Biomed Mater Res; 1991 Oct; 25(10):1275-86. PubMed ID: 1812119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation of methylene dianiline and aqueous-soluble biodegradation products from polycarbonate-polyurethanes.
    Tang YW; Labow RS; Santerre JP
    Biomaterials; 2003 Aug; 24(17):2805-19. PubMed ID: 12742719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermoplastic biodegradable polyurethanes: the effect of chain extender structure on properties and in-vitro degradation.
    Tatai L; Moore TG; Adhikari R; Malherbe F; Jayasekara R; Griffiths I; Gunatillake PA
    Biomaterials; 2007 Dec; 28(36):5407-17. PubMed ID: 17915310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of a carcinogen, 4,4'-methylenedianiline, from thermosetting polyurethane during sterilization.
    Shintani H; Nakamura A
    J Anal Toxicol; 1989; 13(6):354-7. PubMed ID: 2607764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Risk evaluation of occupational exposure to methylene dianiline and toluene diamine in polyurethane foam.
    Lewandowski TA; Hayes AW; Beck BD
    Hum Exp Toxicol; 2005 Dec; 24(12):655-62. PubMed ID: 16408619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the extractive and hydrolytic behavior of microthane poly(ester-urethane) foam by high pressure liquid chromatography.
    Amin P; Wille J; Shah K; Kydonieus A
    J Biomed Mater Res; 1993 May; 27(5):655-66. PubMed ID: 8314818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradation evaluation of polyether and polyester-urethanes with oxidative and hydrolytic enzymes.
    Santerre JP; Labow RS; Duguay DG; Erfle D; Adams GA
    J Biomed Mater Res; 1994 Oct; 28(10):1187-99. PubMed ID: 7829548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The human macrophage response during differentiation and biodegradation on polycarbonate-based polyurethanes: dependence on hard segment chemistry.
    Labow RS; Sa D; Matheson LA; Dinnes DL; Santerre JP
    Biomaterials; 2005 Dec; 26(35):7357-66. PubMed ID: 16005062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of aniline and its degradation products by high-performance liquid chromatography.
    Sternson LA
    IARC Sci Publ; 1981; (40):219-28. PubMed ID: 7327673
    [No Abstract]   [Full Text] [Related]  

  • 12. Long-term in vivo biostability of poly(dimethylsiloxane)/poly(hexamethylene oxide) mixed macrodiol-based polyurethane elastomers.
    Simmons A; Hyvarinen J; Odell RA; Martin DJ; Gunatillake PA; Noble KR; Poole-Warren LA
    Biomaterials; 2004 Sep; 25(20):4887-900. PubMed ID: 15109849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Degradation of polyurethanes in aqueous environment].
    Imai Y; Watanabe M; Kadoma Y
    Tokyo Ika Shika Daigaku Iyo Kizai Kenkyusho Hokoku; 1989; 23():41-7. PubMed ID: 2488962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of 3,3'-dichloro-4,4'-diamino-diphenylmethane (MOCA) and 2-chloroaniline (OCA) in air.
    Purnell CJ; Warwick CJ
    IARC Sci Publ; 1981; (40):133-40. PubMed ID: 7327667
    [No Abstract]   [Full Text] [Related]  

  • 15. Development, optimisation and application of polyurethane foams as new polymeric phases for stir bar sorptive extraction.
    Neng NR; Pinto ML; Pires J; Marcos PM; Nogueira JM
    J Chromatogr A; 2007 Nov; 1171(1-2):8-14. PubMed ID: 17927992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and characterization of L-tyrosine based polyurethanes for biomaterial applications.
    Sarkar D; Yang JC; Gupta AS; Lopina ST
    J Biomed Mater Res A; 2009 Jul; 90(1):263-71. PubMed ID: 18496869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions of enzymes and fungi with crosslinked polyurethanes prepared for biomedical applications.
    Jayabalan M; Shunmugakumar N
    Med Prog Technol; 1994; 20(3-4):261-70. PubMed ID: 7877571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new high-speed hollow fiber based liquid phase microextraction method using volatile organic solvent for determination of aromatic amines in environmental water samples prior to high-performance liquid chromatography.
    Sarafraz-Yazdi A; Mofazzeli F; Es'haghi Z
    Talanta; 2009 Jul; 79(2):472-8. PubMed ID: 19559907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of salicylic acid using surface modified polyurethane film using an imprinted layer of polyaniline.
    Sreenivasan K
    Anal Chim Acta; 2007 Feb; 583(2):284-8. PubMed ID: 17386557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymatic recycling of thermoplastic polyurethanes: Synergistic effect of an esterase and an amidase and recovery of building blocks.
    Magnin A; Pollet E; Perrin R; Ullmann C; Persillon C; Phalip V; Avérous L
    Waste Manag; 2019 Feb; 85():141-150. PubMed ID: 30803567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.