These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 6546349)

  • 21. Properties and mechanism of action of creatine kinase from ox smooth muscle. Anion effects compared with pyruvate kinase.
    Focant B; Watts DC
    Biochem J; 1973 Oct; 135(2):265-76. PubMed ID: 4797165
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Conformations and arrangement of substrates at active sites of ATP-utilizing enzymes.
    Mildvan AS
    Philos Trans R Soc Lond B Biol Sci; 1981 Jun; 293(1063):65-74. PubMed ID: 6115425
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aluminum-adenine nucleotides as alternate substrates for creatine kinase.
    Furumo NC; Viola RE
    Arch Biochem Biophys; 1989 Nov; 275(1):33-9. PubMed ID: 2817903
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kinetic studies and effects of anions on creatine phosphokinase from skeletal muscle of rhesus monkey (Macaca mulatta).
    Chegwidden WR; Watts DC
    Biochim Biophys Acta; 1975 Nov; 410(1):99-114. PubMed ID: 77
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of the six ligands to manganese(II) in transition-state-analogue complexes of creatine kinase: oxygen-17 superhyperfine coupling from selectively labeled ligands.
    Reed GH; Leyh TS
    Biochemistry; 1980 Nov; 19(24):5472-80. PubMed ID: 6257280
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Magnetic resonance measurements of intersubstrate distances at the active site of protein kinase using substitution-inert cobalt(III) and chromium(III) complexes of adenosine 5'-(beta, gamma-methylenetriphosphate).
    Granot J; Mildvan AS; Bramson HN; Kaiser ET
    Biochemistry; 1980 Jul; 19(15):3537-43. PubMed ID: 6893273
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A study of the role of the reactive thiol group of rabbit muscle creatine kinase with a chromophoric reporter group.
    Keighren MA; Price NC
    Biochem J; 1978 Apr; 171(1):269-72. PubMed ID: 646820
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nucleotide binding to pig muscle 3-phosphoglycerate kinase in the crystal and in solution: relationship between substrate antagonism and interdomain communication.
    Merli A; Szilágyi AN; Flachner B; Rossi GL; Vas M
    Biochemistry; 2002 Jan; 41(1):111-9. PubMed ID: 11772008
    [TBL] [Abstract][Full Text] [Related]  

  • 29. pH-dependent effects of Cr(NH3)2ATP on kinetics of yeast hexokinase PII. Relationship to the slow transition mechanism.
    Peters BA; Neet KE
    J Biol Chem; 1976 Dec; 251(23):7521-5. PubMed ID: 12169
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An unusually low pK(a) for Cys282 in the active site of human muscle creatine kinase.
    Wang PF; McLeish MJ; Kneen MM; Lee G; Kenyon GL
    Biochemistry; 2001 Oct; 40(39):11698-705. PubMed ID: 11570870
    [TBL] [Abstract][Full Text] [Related]  

  • 31. KINETIC STUDIES OF THE REVERSE REACTION CATALYSED BY ADENOSINE TRIPHOSPHATE-CREATINE PHOSPHOTRANSFERASE. THE INHIBITION BY MAGNESIUM IONS AND ADENOSINE DIPHOSPHATE.
    MORRISON JF; O'SULLIVAN WJ
    Biochem J; 1965 Jan; 94(1):221-35. PubMed ID: 14342234
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Combination of 31P-NMR magnetization transfer and radioisotope exchange methods for assessment of an enzyme reaction mechanism: rate-determining steps of the creatine kinase reaction.
    Kupriyanov VV; Balaban RS; Lyulina NV; Steinschneider AYa ; Saks VA
    Biochim Biophys Acta; 1990 Dec; 1020(3):290-304. PubMed ID: 2248962
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Use of chromium-adenosine triphosphate and lyxose to elucidate the kinetic mechanism and coordination state of the nucleotide substrate for yeast hexokinase.
    Danenberg KD; Cleland WW
    Biochemistry; 1975 Jan; 14(1):28-39. PubMed ID: 1089014
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Magnetic resonance studies of the spatial arrangement of glucose-6-phosphate and chromium (III)-adenosine diphosphate at the catalytic site of hexokinase.
    Petersen RL; Gupta BK
    Biophys J; 1979 Jul; 27(1):1-14. PubMed ID: 233578
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Loop movement and catalysis in creatine kinase.
    Wang PF; Flynn AJ; McLeish MJ; Kenyon GL
    IUBMB Life; 2005; 57(4-5):355-62. PubMed ID: 16036620
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phosphorus nuclear-magnetic-resonance studies of the transition-state analogue complex of creatine kinase.
    Milner-White EJ; Rycroft DS
    Biochem J; 1977 Dec; 167(3):827-9. PubMed ID: 603637
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inhibition of creatine kinase by chromium nucleotides.
    Schimerlik MI; Cleland WW
    J Biol Chem; 1973 Dec; 248(24):8418-23. PubMed ID: 4797017
    [No Abstract]   [Full Text] [Related]  

  • 38. Inhibition of adenosine 5'-triphosphate-creatine phosphotransferase by substrate-anion complexes. Evidence for the transition-state organization of the catalytic site.
    Milner-White EJ; Watts DC
    Biochem J; 1971 May; 122(5):727-40. PubMed ID: 5129268
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structures of manganese(II) complexes with ATP, ADP, and phosphocreatine in the reactive central complexes with creatine kinase: electron paramagnetic resonance studies with oxygen-17-labeled ligands.
    Leyh TS; Goodhart PJ; Nguyen AC; Kenyon GL; Reed GH
    Biochemistry; 1985 Jan; 24(2):308-16. PubMed ID: 2983754
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stability constants of Mg2+ and Cd2+ complexes of adenine nucleotides and thionucleotides and rate constants for formation and dissociation of MgATP and MgADP.
    Pecoraro VL; Hermes JD; Cleland WW
    Biochemistry; 1984 Oct; 23(22):5262-71. PubMed ID: 6334536
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.