These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 6546380)

  • 1. Damaging effects of oxygen radicals on resealed erythrocyte ghosts.
    Girotti AW; Thomas JP
    J Biol Chem; 1984 Feb; 259(3):1744-52. PubMed ID: 6546380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipid photooxidation in erythrocyte ghosts: sensitization of the membranes toward ascorbate- and superoxide-induced peroxidation and lysis.
    Girotti AW; Thomas JP; Jordan JE
    Arch Biochem Biophys; 1985 Jan; 236(1):238-51. PubMed ID: 2981506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of cell membrane lipid peroxidation by cadmium- and zinc-metallothioneins.
    Thomas JP; Bachowski GJ; Girotti AW
    Biochim Biophys Acta; 1986 Dec; 884(3):448-61. PubMed ID: 3778934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibitory effect of zinc(II) on free radical lipid peroxidation in erythrocyte membranes.
    Girotti AW; Thomas JP; Jordan JE
    J Free Radic Biol Med; 1985; 1(5-6):395-401. PubMed ID: 3841804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Xanthine oxidase-catalyzed crosslinking of cell membrane proteins.
    Girotti AW; Thomas JP; Jordan JE
    Arch Biochem Biophys; 1986 Dec; 251(2):639-53. PubMed ID: 3800391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The relative effectiveness of .OH, H2O2, O2-, and reducing free radicals in causing damage to biomembranes. A study of radiation damage to erythrocyte ghosts using selective free radical scavengers.
    Kong S; Davison AJ
    Biochim Biophys Acta; 1981 Jan; 640(1):313-25. PubMed ID: 6260172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superoxide and hydrogen peroxide-dependent lipid peroxidation in intact and triton-dispersed erythrocyte membranes.
    Girotti AW; Thomas JP
    Biochem Biophys Res Commun; 1984 Jan; 118(2):474-80. PubMed ID: 6322749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipid peroxidation in erythrocyte membranes: cholesterol product analysis in photosensitized and xanthine oxidase-catalyzed reactions.
    Girotti AW; Bachowski GJ; Jordan JE
    Lipids; 1987 Jun; 22(6):401-8. PubMed ID: 3112484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of iron chelates in hydroxyl radical production by rat liver microsomes, NADPH-cytochrome P-450 reductase and xanthine oxidase.
    Winston GW; Feierman DE; Cederbaum AI
    Arch Biochem Biophys; 1984 Jul; 232(1):378-90. PubMed ID: 6331321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superoxide, hydrogen peroxide, and singlet oxygen in lipid peroxidation by a xanthine oxidase system.
    Kellogg EW; Fridovich I
    J Biol Chem; 1975 Nov; 250(22):8812-7. PubMed ID: 171266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Possible mechanism responsible for allopurinol-nephrotoxicity: lipid peroxidation and systems of producing- and scavenging oxygen radicals.
    Suzuki Y; Sudo J
    Jpn J Pharmacol; 1987 Oct; 45(2):271-9. PubMed ID: 3437594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photodynamic action of protoporphyrin on resealed erythrocyte membranes: mechanisms of release of trapped markers.
    Girotti AW; Deziel MR
    Adv Exp Med Biol; 1983; 160():213-25. PubMed ID: 6837353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iron and xanthine oxidase catalyze formation of an oxidant species distinguishable from OH.: comparison with the Haber-Weiss reaction.
    Winterbourn CC; Sutton HC
    Arch Biochem Biophys; 1986 Jan; 244(1):27-34. PubMed ID: 3004338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ferritin and superoxide-dependent lipid peroxidation.
    Thomas CE; Morehouse LA; Aust SD
    J Biol Chem; 1985 Mar; 260(6):3275-80. PubMed ID: 2982854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peroxidation of linolenic acid promoted by human polymorphonuclear leucocytes.
    Carlin G
    J Free Radic Biol Med; 1985; 1(4):255-61. PubMed ID: 2873164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Allopurinol-insensitive oxygen radical formation by milk xanthine oxidase systems.
    Nakamura M
    J Biochem; 1991 Sep; 110(3):450-6. PubMed ID: 1663114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Xanthine oxidase- and iron-dependent lipid peroxidation.
    Miller DM; Grover TA; Nayini N; Aust SD
    Arch Biochem Biophys; 1993 Feb; 301(1):1-7. PubMed ID: 8382902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stunned myocardium and oxygen free radicals--sarcolemmal membrane damage due to oxygen free radicals.
    Kaneko M; Hayashi H; Kobayashi A; Yamazaki N; Dhalla NS
    Jpn Circ J; 1991 Sep; 55(9):885-92. PubMed ID: 1834872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Depression of heart sarcolemmal Ca2+-pump activity by oxygen free radicals.
    Kaneko M; Beamish RE; Dhalla NS
    Am J Physiol; 1989 Feb; 256(2 Pt 2):H368-74. PubMed ID: 2537032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Singlet oxygen generation in the superoxide reaction.
    Mao Y; Zang L; Shi X
    Biochem Mol Biol Int; 1995 May; 36(1):227-32. PubMed ID: 7663419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.