These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 6546487)
21. Virulence of Mycobacterium tuberculosis depends on lipoamide dehydrogenase, a member of three multienzyme complexes. Venugopal A; Bryk R; Shi S; Rhee K; Rath P; Schnappinger D; Ehrt S; Nathan C Cell Host Microbe; 2011 Jan; 9(1):21-31. PubMed ID: 21238944 [TBL] [Abstract][Full Text] [Related]
22. Lipoamide dehydrogenase from baker's yeast. Improved purification and some molecular, kinetic, and immunochemical properties. Heinrich P; Ronft H; Schartau W; Kresze GB Hoppe Seylers Z Physiol Chem; 1983 Jan; 364(1):41-50. PubMed ID: 6404748 [TBL] [Abstract][Full Text] [Related]
23. Immunochemical comparison of lipoamide dehydrogenases from various sources and reactivity of various lipoamide dehydrogenases with rat heart pyruvate dehydrogenase-subcomplex. Matuda S; Saheki T Biochem Biophys Res Commun; 1985 Jun; 129(2):479-84. PubMed ID: 3893428 [TBL] [Abstract][Full Text] [Related]
24. Purification of a new dihydrolipoamide dehydrogenase from Escherichia coli. Richarme G J Bacteriol; 1989 Dec; 171(12):6580-5. PubMed ID: 2687245 [TBL] [Abstract][Full Text] [Related]
25. Lipoamide dehydrogenase from streptomyces seoulensis: biochemical and genetic properties. Youn H; Kwak J; Youn HD; Hah YC; Kang SO Biochim Biophys Acta; 1998 Nov; 1388(2):405-18. PubMed ID: 9858775 [TBL] [Abstract][Full Text] [Related]
26. Crystal structure and functional analysis of lipoamide dehydrogenase from Mycobacterium tuberculosis. Rajashankar KR; Bryk R; Kniewel R; Buglino JA; Nathan CF; Lima CD J Biol Chem; 2005 Oct; 280(40):33977-83. PubMed ID: 16093239 [TBL] [Abstract][Full Text] [Related]
27. Isolation of an atypically small lipoamide dehydrogenase involved in the glycine decarboxylase complex from Eubacterium acidaminophilum. Freudenberg W; Dietrichs D; Lebertz H; Andreesen JR J Bacteriol; 1989 Mar; 171(3):1346-54. PubMed ID: 2537814 [TBL] [Abstract][Full Text] [Related]
28. Lipoamide dehydrogenase from Azotobacter vinelandii. The role of the C-terminus in catalysis and dimer stabilization. Benen J; van Berkel W; Veeger C; de Kok A Eur J Biochem; 1992 Jul; 207(2):499-505. PubMed ID: 1633805 [TBL] [Abstract][Full Text] [Related]
29. Comparison of the amino acid sequences of the transacylase components of branched chain oxoacid dehydrogenase of Pseudomonas putida, and the pyruvate and 2-oxoglutarate dehydrogenases of Escherichia coli. Burns G; Brown T; Hatter K; Sokatch JR Eur J Biochem; 1988 Sep; 176(1):165-9. PubMed ID: 3046941 [TBL] [Abstract][Full Text] [Related]
30. Transcriptional analysis of the promoter region of the Pseudomonas putida branched-chain keto acid dehydrogenase operon. Madhusudhan KT; Huang G; Burns G; Sokatch JR J Bacteriol; 1990 Oct; 172(10):5655-63. PubMed ID: 2211503 [TBL] [Abstract][Full Text] [Related]
32. Co-regulation of lipoamide dehydrogenase and 2-oxoglutarate dehydrogenase synthesis in Escherichia coli: characterisation of an ArcA binding site in the lpd promoter. Cunningham L; Georgellis D; Green J; Guest JR FEMS Microbiol Lett; 1998 Dec; 169(2):403-8. PubMed ID: 9868788 [TBL] [Abstract][Full Text] [Related]
33. Mycobacterium tuberculosis lipoamide dehydrogenase is encoded by Rv0462 and not by the lpdA or lpdB genes. Argyrou A; Blanchard JS Biochemistry; 2001 Sep; 40(38):11353-63. PubMed ID: 11560483 [TBL] [Abstract][Full Text] [Related]
34. Purification and comparative studies of dihydrolipoamide dehydrogenases from the anaerobic, glycine-utilizing bacteria Peptostreptococcus glycinophilus, Clostridium cylindrosporum, and Clostridium sporogenes. Dietrichs D; Andreesen JR J Bacteriol; 1990 Jan; 172(1):243-51. PubMed ID: 2294086 [TBL] [Abstract][Full Text] [Related]
35. Contrasting effects of selenite and tellurite on lipoamide dehydrogenase activity suggest a different biological behaviour of the two chalcogens. Folda A; Citta A; Scutari G; Bindoli A; Rigobello MP Arch Biochem Biophys; 2012 Jan; 517(1):30-6. PubMed ID: 22100759 [TBL] [Abstract][Full Text] [Related]
36. Reduction of lipoic acid by lipoamide dehydrogenase. Biewenga GP; Dorstijn MA; Verhagen JV; Haenen GR; Bast A Biochem Pharmacol; 1996 Feb; 51(3):233-8. PubMed ID: 8573188 [TBL] [Abstract][Full Text] [Related]
37. Stereospecific reduction of R(+)-thioctic acid by porcine heart lipoamide dehydrogenase/diaphorase. Schempp H; Ulrich H; Elstner EF Z Naturforsch C J Biosci; 1994; 49(9-10):691-2. PubMed ID: 7945680 [TBL] [Abstract][Full Text] [Related]
38. The metabolic acclimation of Arabidopsis thaliana to arsenate is sensitized by the loss of mitochondrial LIPOAMIDE DEHYDROGENASE2, a key enzyme in oxidative metabolism. Chen W; Taylor NL; Chi Y; Millar AH; Lambers H; Finnegan PM Plant Cell Environ; 2014 Mar; 37(3):684-95. PubMed ID: 23961884 [TBL] [Abstract][Full Text] [Related]
39. [Glucose consumption and dehydrogenase activity of the cells of the arsenite-oxidizing bacterium Pseudomonas putida]. Abdrashitova SA; Abdullina GG; Ilialetdinov AN Mikrobiologiia; 1985; 54(4):679-81. PubMed ID: 4058329 [TBL] [Abstract][Full Text] [Related]
40. Similarity of the E1 subunits of branched-chain-oxoacid dehydrogenase from Pseudomonas putida to the corresponding subunits of mammalian branched-chain-oxoacid and pyruvate dehydrogenases. Burns G; Brown T; Hatter K; Idriss JM; Sokatch JR Eur J Biochem; 1988 Sep; 176(2):311-7. PubMed ID: 3416875 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]