These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 6547622)

  • 1. Propagation of excitation in idealized anisotropic two-dimensional tissue.
    Barr RC; Plonsey R
    Biophys J; 1984 Jun; 45(6):1191-202. PubMed ID: 6547622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Current flow patterns in two-dimensional anisotropic bisyncytia with normal and extreme conductivities.
    Plonsey R; Barr RC
    Biophys J; 1984 Mar; 45(3):557-71. PubMed ID: 6713068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A quasi-one-dimensional theory for anisotropic propagation of excitation in cardiac muscle.
    Wu J; Johnson EA; Kootsey JM
    Biophys J; 1996 Nov; 71(5):2427-39. PubMed ID: 8913583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Numerical Simulation of Propagation of Electric Excitation in the Heart Wall Taking into Account Its Fibrous-Laminar Structure].
    Vasserman IN; Matveenko VP; Shardakov IN; Shestakov AP
    Biofizika; 2015; 60(4):748-57. PubMed ID: 26394475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electric and magnetic fields from two-dimensional anisotropic bisyncytia.
    Sepulveda NG; Wikswo JP
    Biophys J; 1987 Apr; 51(4):557-68. PubMed ID: 3580484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extracellular potentials related to intracellular action potentials during impulse conduction in anisotropic canine cardiac muscle.
    Spach MS; Miller WT; Miller-Jones E; Warren RB; Barr RC
    Circ Res; 1979 Aug; 45(2):188-204. PubMed ID: 445703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial distribution of cardiac transmembrane potentials around an extracellular electrode: dependence on fiber orientation.
    Neunlist M; Tung L
    Biophys J; 1995 Jun; 68(6):2310-22. PubMed ID: 7647235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrophysiological interaction through the interstitial space between adjacent unmyelinated parallel fibers.
    Barr RC; Plonsey R
    Biophys J; 1992 May; 61(5):1164-75. PubMed ID: 1600078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstruction of propagated electrical activity with a two-dimensional model of anisotropic heart muscle.
    Roberge FA; Vinet A; Victorri B
    Circ Res; 1986 Apr; 58(4):461-75. PubMed ID: 3698214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of premature anodal stimulations on cardiac transmembrane potential and intracellular calcium distributions computed by anisotropic Bidomain models.
    Colli Franzone P; Pavarino LF; Scacchi S
    Europace; 2014 May; 16(5):736-42. PubMed ID: 24798963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interstitial potentials and their change with depth into cardiac tissue.
    Plonsey R; Barr RC
    Biophys J; 1987 Apr; 51(4):547-55. PubMed ID: 3580483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analytic solution of the anisotropic bidomain equations for myocardial tissue: the effect of adjoining conductive regions.
    Clements JC; Horácek BM
    IEEE Trans Biomed Eng; 2005 Oct; 52(10):1784-8. PubMed ID: 16235664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Approximate analytical solutions for excitation and propagation in cardiac tissue.
    Greene D; Shiferaw Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042719. PubMed ID: 25974539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Current injection into a two-dimensional anisotropic bidomain.
    Sepulveda NG; Roth BJ; Wikswo JP
    Biophys J; 1989 May; 55(5):987-99. PubMed ID: 2720084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The discontinuous nature of electrical propagation in cardiac muscle. Consideration of a quantitative model incorporating the membrane ionic properties and structural complexities. The ALZA distinguished lecture.
    Spach MS
    Ann Biomed Eng; 1983; 11(3-4):209-61. PubMed ID: 6670785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How the anisotropy of the intracellular and extracellular conductivities influences stimulation of cardiac muscle.
    Roth BJ
    J Math Biol; 1992; 30(6):633-46. PubMed ID: 1640183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential and current distributions in a cylindrical bundle of cardiac tissue.
    Henriquez CS; Trayanova N; Plonsey R
    Biophys J; 1988 Jun; 53(6):907-18. PubMed ID: 3395660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of bath resistance on action potentials in the squid giant axon: myocardial implications.
    Wu J; Wikswo JP
    Biophys J; 1997 Nov; 73(5):2347-58. PubMed ID: 9370430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of rotating waves in cardiac muscle: analysis of the effect of an electric field.
    Pumir A; Plaza F; Krinsky VI
    Proc Biol Sci; 1994 Aug; 257(1349):129-34. PubMed ID: 7972160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active electric properties of cardiac muscle.
    Geselowitz DB; Miller WT
    Bioelectromagnetics; 1982; 3(1):127-32. PubMed ID: 7082384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.