BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 6547734)

  • 1. Speech processing studies using an acoustic model of a multiple-channel cochlear implant.
    Blamey PJ; Dowell RC; Tong YC; Brown AM; Luscombe SM; Clark GM
    J Acoust Soc Am; 1984 Jul; 76(1):104-10. PubMed ID: 6547734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An acoustic model of a multiple-channel cochlear implant.
    Blamey PJ; Dowell RC; Tong YC; Clark GM
    J Acoust Soc Am; 1984 Jul; 76(1):97-103. PubMed ID: 6547735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrical stimulation of the auditory nerve: the coding of frequency, the perception of pitch and the development of cochlear implant speech processing strategies for profoundly deaf people.
    Clark GM
    Clin Exp Pharmacol Physiol; 1996 Sep; 23(9):766-76. PubMed ID: 8911712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Speech perception with mono- and quadrupolar electrode configurations: a crossover study.
    Mens LH; Berenstein CK
    Otol Neurotol; 2005 Sep; 26(5):957-64. PubMed ID: 16151343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of Spectral and Temporal Resolution in Cochlear Implant Users Using Psychoacoustic Discrimination and Speech Cue Categorization.
    Winn MB; Won JH; Moon IJ
    Ear Hear; 2016; 37(6):e377-e390. PubMed ID: 27438871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Speech perception with multi-channel cochlear implant of short duration pulse strategy.
    Funasaka S; Takahashi O; Yukawa K; Hatsushika S; Hayashibara S
    Auris Nasus Larynx; 1987; 14(3):153-63. PubMed ID: 3451734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preservation of hearing in cochlear implant surgery: advantages of combined electrical and acoustical speech processing.
    Gantz BJ; Turner C; Gfeller KE; Lowder MW
    Laryngoscope; 2005 May; 115(5):796-802. PubMed ID: 15867642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of two cochlear implant speech-processing strategies.
    Clark GM; Tong YC; Dowell RC
    Ann Otol Rhinol Laryngol; 1984; 93(2 Pt 1):127-31. PubMed ID: 6546846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preliminary evaluation of a formant enhancement algorithm on the perception of speech in noise for normally hearing listeners.
    Alcántara JI; Dooley GJ; Blamey PJ; Seligman PM
    Audiology; 1994; 33(1):15-27. PubMed ID: 8129677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of three speech coding strategies using an acoustic model of a cochlear implant.
    Blamey PJ; Martin LF; Clark GM
    J Acoust Soc Am; 1985 Jan; 77(1):209-17. PubMed ID: 3838322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Does acoustic fundamental frequency information enhance cochlear implant performance?
    Mulhern L; Cullington H
    Cochlear Implants Int; 2014 Mar; 15(2):101-8. PubMed ID: 24597637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Speech recognition in noise as a function of the number of spectral channels: comparison of acoustic hearing and cochlear implants.
    Friesen LM; Shannon RV; Baskent D; Wang X
    J Acoust Soc Am; 2001 Aug; 110(2):1150-63. PubMed ID: 11519582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Masking release with changing fundamental frequency: Electric acoustic stimulation resembles normal hearing subjects.
    Auinger AB; Riss D; Liepins R; Rader T; Keck T; Keintzel T; Kaider A; Baumgartner WD; Gstoettner W; Arnoldner C
    Hear Res; 2017 Jul; 350():226-234. PubMed ID: 28527538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Speech perception using a two-formant 22-electrode cochlear prosthesis in quiet and in noise.
    Dowell RC; Seligman PM; Blamey PJ; Clark GM
    Acta Otolaryngol; 1987; 104(5-6):439-46. PubMed ID: 3434265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Speech intelligibility as a predictor of cochlear implant outcome in prelingually deafened adults.
    van Dijkhuizen JN; Beers M; Boermans PP; Briaire JJ; Frijns JH
    Ear Hear; 2011; 32(4):445-58. PubMed ID: 21258238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accuracy of cochlear implant recipients on pitch perception, melody recognition, and speech reception in noise.
    Gfeller K; Turner C; Oleson J; Zhang X; Gantz B; Froman R; Olszewski C
    Ear Hear; 2007 Jun; 28(3):412-23. PubMed ID: 17485990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A physiologically-inspired model reproducing the speech intelligibility benefit in cochlear implant listeners with residual acoustic hearing.
    Zamaninezhad L; Hohmann V; Büchner A; Schädler MR; Jürgens T
    Hear Res; 2017 Feb; 344():50-61. PubMed ID: 27838372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of two frequency-to-electrode maps for acoustic-electric stimulation.
    Simpson A; McDermott HJ; Dowell RC; Sucher C; Briggs RJ
    Int J Audiol; 2009 Feb; 48(2):63-73. PubMed ID: 19219690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vowel and consonant recognition of cochlear implant patients using formant-estimating speech processors.
    Blamey PJ; Dowell RC; Brown AM; Clark GM; Seligman PM
    J Acoust Soc Am; 1987 Jul; 82(1):48-57. PubMed ID: 3624640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spread of excitation and channel interaction in single- and dual-electrode cochlear implant stimulation.
    Snel-Bongers J; Briaire JJ; Vanpoucke FJ; Frijns JH
    Ear Hear; 2012; 33(3):367-76. PubMed ID: 22048258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.