These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 6547953)
1. Affinity labeling of the aldehyde site of bacterial luciferase. Fried A; Tu SC J Biol Chem; 1984 Sep; 259(17):10754-9. PubMed ID: 6547953 [TBL] [Abstract][Full Text] [Related]
2. Chemical modification and characterization of the alpha cysteine 106 at the Vibrio harveyi luciferase active center. Paquatte O; Tu SC Photochem Photobiol; 1989 Dec; 50(6):817-25. PubMed ID: 2626493 [TBL] [Abstract][Full Text] [Related]
3. Active center studies on bacterial luciferase: modification of the enzyme with 2,4-dinitrofluorobenzene. Welches WR; Baldwin TO Biochemistry; 1981 Feb; 20(3):512-7. PubMed ID: 6971121 [TBL] [Abstract][Full Text] [Related]
4. Characterization of the aldehyde binding site of bacterial luciferase by photoaffinity labeling. Tu SC; Henkin J Biochemistry; 1983 Jan; 22(2):519-23. PubMed ID: 6824641 [TBL] [Abstract][Full Text] [Related]
5. Mechanism of aldehyde inhibition of Vibrio harveyi luciferase. Identification of two aldehyde sites and relationship between aldehyde and flavin binding. Lei B; Cho KW; Tu SC J Biol Chem; 1994 Feb; 269(8):5612-8. PubMed ID: 8119897 [TBL] [Abstract][Full Text] [Related]
6. Delineation of bacterial luciferase aldehyde site by bifunctional labeling reagents. Paquatte O; Fried A; Tu SC Arch Biochem Biophys; 1988 Aug; 264(2):392-9. PubMed ID: 3401008 [TBL] [Abstract][Full Text] [Related]
7. Characterization of the binding of Photobacterium phosphoreum P-flavin by Vibrio harveyi Luciferase. Wei CJ; Lei B; Tu SC Arch Biochem Biophys; 2001 Dec; 396(2):199-206. PubMed ID: 11747297 [TBL] [Abstract][Full Text] [Related]
8. Kinetic destabilization of the hydroperoxy flavin intermediate by site-directed modification of the reactive thiol in bacterial luciferase. Abu-Soud HM; Clark AC; Francisco WA; Baldwin TO; Raushel FM J Biol Chem; 1993 Apr; 268(11):7699-706. PubMed ID: 8463299 [TBL] [Abstract][Full Text] [Related]
9. Bacterial luciferase: demonstration of a catalytically competent altered conformational state following a single turnover. AbouKhair NK; Ziegler MM; Baldwin TO Biochemistry; 1985 Jul; 24(15):3942-7. PubMed ID: 4052376 [TBL] [Abstract][Full Text] [Related]
10. Tryptophan 250 on the alpha subunit plays an important role in flavin and aldehyde binding to bacterial luciferase. Effects of W-->Y mutations on catalytic function. Li Z; Meighen EA Biochemistry; 1995 Nov; 34(46):15084-90. PubMed ID: 7578121 [TBL] [Abstract][Full Text] [Related]
11. Interaction of bacterial luciferase with aldehyde substrates and inhibitors. Francisco WA; Abu-Soud HM; Baldwin TO; Raushel FM J Biol Chem; 1993 Nov; 268(33):24734-41. PubMed ID: 8227032 [TBL] [Abstract][Full Text] [Related]
12. Binding of 2,2-diphenylpropylamine at the aldehyde site of bacterial luciferase increases the affinity of the reduced riboflavin 5'-phosphate site. Holzman TF; Baldwin TO Biochemistry; 1981 Sep; 20(19):5524-8. PubMed ID: 7295690 [TBL] [Abstract][Full Text] [Related]
13. Chemical modification of bacterial luciferase with ethoxyformic anhydride: evidence for an essential histidyl residue. Cousineau J; Meighen E Biochemistry; 1976 Nov; 15(23):4992-5000. PubMed ID: 990259 [TBL] [Abstract][Full Text] [Related]
14. Random and site-directed mutagenesis of bacterial luciferase: investigation of the aldehyde binding site. Chen LH; Baldwin TO Biochemistry; 1989 Mar; 28(6):2684-9. PubMed ID: 2730882 [TBL] [Abstract][Full Text] [Related]
15. Interactions between aldehyde derivatives and the aldehyde binding site of bacterial luciferase. Jockers R; Ziegler T; Schmid RD J Biolumin Chemilumin; 1995; 10(1):21-7. PubMed ID: 7762412 [TBL] [Abstract][Full Text] [Related]
16. Activity coupling and complex formation between bacterial luciferase and flavin reductases. Tu SC Photochem Photobiol Sci; 2008 Feb; 7(2):183-8. PubMed ID: 18264585 [TBL] [Abstract][Full Text] [Related]
17. Fluorescent polyene aliphatics as spectroscopic and mechanistic probes for bacterial luciferase: evidence against carbonyl product from aldehyde as the primary excited species. Cho KW; Tu SC; Shao R Photochem Photobiol; 1993 Feb; 57(2):396-402. PubMed ID: 8451303 [TBL] [Abstract][Full Text] [Related]
18. Implications of the reactive thiol and the proximal non-proline cis-peptide bond in the Structure and function of Vibrio harveyi luciferase. Lin LY; Sulea T; Szittner R; Kor C; Purisima EO; Meighen EA Biochemistry; 2002 Aug; 41(31):9938-45. PubMed ID: 12146958 [TBL] [Abstract][Full Text] [Related]
19. Relationship between the conserved alpha subunit arginine 107 and effects of phosphate on the activity and stability of Vibrio harveyi luciferase. Moore C; Lei B; Tu SC Arch Biochem Biophys; 1999 Oct; 370(1):45-50. PubMed ID: 10496975 [TBL] [Abstract][Full Text] [Related]
20. Site-directed mutagenesis of bacterial luciferase: analysis of the 'essential' thiol. Baldwin TO; Chen LH; Chlumsky LJ; Devine JH; Ziegler MM J Biolumin Chemilumin; 1989 Jul; 4(1):40-8. PubMed ID: 2678923 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]