These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 6548293)

  • 1. Hydroperoxyflavin-mediated oxidations of organosulfur compounds. Model studies for the flavin monooxygenase.
    Doerge DR; Corbett MD
    Mol Pharmacol; 1984 Sep; 26(2):348-52. PubMed ID: 6548293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Liver microsome and flavin-containing monooxygenase catalyzed oxidation of organic selenium compounds.
    Chen GP; Ziegler DM
    Arch Biochem Biophys; 1994 Aug; 312(2):566-72. PubMed ID: 8037472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potentiometric and further kinetic characterization of the flavin-binding domain of Saccharomyces cerevisiae flavocytochrome b2. Inhibition by anions binding in the active site.
    Cénas N; Lê KH; Terrier M; Lederer F
    Biochemistry; 2007 Apr; 46(15):4661-70. PubMed ID: 17373777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic isotope effects as probes of the mechanism of galactose oxidase.
    Whittaker MM; Ballou DP; Whittaker JW
    Biochemistry; 1998 Jun; 37(23):8426-36. PubMed ID: 9622494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing the mechanism of proton coupled electron transfer to dioxygen: the oxidative half-reaction of bovine serum amine oxidase.
    Su Q; Klinman JP
    Biochemistry; 1998 Sep; 37(36):12513-25. PubMed ID: 9730824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of flavin transfer and oxygen activation by the two-component flavoenzyme styrene monooxygenase.
    Kantz A; Chin F; Nallamothu N; Nguyen T; Gassner GT
    Arch Biochem Biophys; 2005 Oct; 442(1):102-16. PubMed ID: 16140257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multisubstrate flavin-containing monooxygenases: applications of mechanism to specificity.
    Poulsen LL; Ziegler DM
    Chem Biol Interact; 1995 Apr; 96(1):57-73. PubMed ID: 7720105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Primary arylamine oxidation by a flavinhydroperoxide. A study of the basis for the substrate specificity of the flavoprotein monooxygenase.
    Doerge DR; Corbett MD
    Biochem Pharmacol; 1984 Nov; 33(22):3615-9. PubMed ID: 6548913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methionine S-oxidation in human and rabbit liver microsomes: evidence for a high-affinity methionine S-oxidase activity that is distinct from flavin-containing monooxygenase 3.
    Ripp SL; Itagaki K; Philpot RM; Elfarra AA
    Arch Biochem Biophys; 1999 Jul; 367(2):322-32. PubMed ID: 10395751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cerebral flavin-containing monooxygenase-mediated metabolism of antidepressants in brain: immunochemical properties and immunocytochemical localization.
    Bhamre S; Bhagwat SV; Shankar SK; Williams DE; Ravindranath V
    J Pharmacol Exp Ther; 1993 Oct; 267(1):555-9. PubMed ID: 8229786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization and modulation by drugs of sheep liver microsomal flavin monooxygenase activity.
    Can Demirdöğen B; Adali O
    Cell Biochem Funct; 2005; 23(4):245-51. PubMed ID: 15473006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics involved in catalysis by single-component and two-component flavin-dependent aromatic hydroxylases.
    Ballou DP; Entsch B; Cole LJ
    Biochem Biophys Res Commun; 2005 Dec; 338(1):590-8. PubMed ID: 16236251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen peroxide elimination from C4a-hydroperoxyflavin in a flavoprotein oxidase occurs through a single proton transfer from flavin N5 to a peroxide leaving group.
    Sucharitakul J; Wongnate T; Chaiyen P
    J Biol Chem; 2011 May; 286(19):16900-9. PubMed ID: 21454569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. C4a-hydroperoxyflavin formation in N-hydroxylating flavin monooxygenases is mediated by the 2'-OH of the nicotinamide ribose of NADP⁺.
    Robinson R; Badieyan S; Sobrado P
    Biochemistry; 2013 Dec; 52(51):9089-91. PubMed ID: 24321106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate specificity of the rabbit lung flavin-containing monooxygenase for amines: oxidation products of primary alkylamines.
    Poulsen LL; Taylor K; Williams DE; Masters BS; Ziegler DM
    Mol Pharmacol; 1986 Dec; 30(6):680-5. PubMed ID: 3785145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of catalysis in flavin-dependent monooxygenases.
    Palfey BA; McDonald CA
    Arch Biochem Biophys; 2010 Jan; 493(1):26-36. PubMed ID: 19944667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model systems for flavoenzyme activity: relationships between cofactor structure, binding and redox properties.
    Legrand YM; Gray M; Cooke G; Rotello VM
    J Am Chem Soc; 2003 Dec; 125(51):15789-95. PubMed ID: 14677969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The mammalian flavin-containing monooxygenases: molecular characterization and regulation of expression.
    Hines RN; Cashman JR; Philpot RM; Williams DE; Ziegler DM
    Toxicol Appl Pharmacol; 1994 Mar; 125(1):1-6. PubMed ID: 8128486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Porcine recombinant dihydropyrimidine dehydrogenase: comparison of the spectroscopic and catalytic properties of the wild-type and C671A mutant enzymes.
    Rosenbaum K; Jahnke K; Curti B; Hagen WR; Schnackerz KD; Vanoni MA
    Biochemistry; 1998 Dec; 37(50):17598-609. PubMed ID: 9860876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kynurenine 3-monooxygenase from Pseudomonas fluorescens: substrate-like inhibitors both stimulate flavin reduction and stabilize the flavin-peroxo intermediate yet result in the production of hydrogen peroxide.
    Crozier-Reabe KR; Phillips RS; Moran GR
    Biochemistry; 2008 Nov; 47(47):12420-33. PubMed ID: 18954092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.