BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 6548914)

  • 1. Elevation of molybdenum hydroxylase levels in rabbit liver after ingestion of phthalazine or its hydroxylated metabolite.
    Johnson C; Stubley-Beedham C; Stell JG
    Biochem Pharmacol; 1984 Nov; 33(22):3699-705. PubMed ID: 6548914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 1-substituted phthalazines as probes of the substrate-binding site of mammalian molybdenum hydroxylases.
    Beedham C; Bruce SE; Critchley DJ; Rance DJ
    Biochem Pharmacol; 1990 Apr; 39(7):1213-21. PubMed ID: 2322306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reaction of 1-amino- and 1-chlorophthalazine with mammalian molybdenum hydroxylases in vitro.
    Johnson C; Beedham C; Stell JG
    Xenobiotica; 1987 Jan; 17(1):17-24. PubMed ID: 3825175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diurnal variation and melatonin induction of hepatic molybdenum hydroxylase activity in the guinea-pig.
    Beedham C; Padwick DJ; al-Tayib Y; Smith JA
    Biochem Pharmacol; 1989 May; 38(9):1459-64. PubMed ID: 2719720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substrate specificity of human liver aldehyde oxidase toward substituted quinazolines and phthalazines: a comparison with hepatic enzyme from guinea pig, rabbit, and baboon.
    Beedham C; Critchley DJ; Rance DJ
    Arch Biochem Biophys; 1995 Jun; 319(2):481-90. PubMed ID: 7786031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydralazine: a potent inhibitor of aldehyde oxidase activity in vitro and in vivo.
    Johnson C; Stubley-Beedham C; Stell JG
    Biochem Pharmacol; 1985 Dec; 34(24):4251-6. PubMed ID: 3841000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro oxidation of famciclovir and 6-deoxypenciclovir by aldehyde oxidase from human, guinea pig, rabbit, and rat liver.
    Rashidi MR; Smith JA; Clarke SE; Beedham C
    Drug Metab Dispos; 1997 Jul; 25(7):805-13. PubMed ID: 9224775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subcellular localisation of guinea pig hepatic molybdenum hydroxylases.
    Critchley DJ; Rance DJ; Beedham C
    Biochem Biophys Res Commun; 1992 May; 185(1):54-9. PubMed ID: 1599489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The oxidation of azaheterocycles with mammalian liver aldehyde oxidase.
    Stubley C; Stell JG; Mathieson DW
    Xenobiotica; 1979 Aug; 9(8):475-84. PubMed ID: 516790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Properties of rabbit liver aldehyde oxidase and the relationship of the enzyme to xanthine oxidase and dehydrogenase.
    Turner NA; Doyle WA; Ventom AM; Bray RC
    Eur J Biochem; 1995 Sep; 232(2):646-57. PubMed ID: 7556219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tissue distribution of the molybdenum hydroxylases, aldehyde oxidase and xanthine oxidase, in male and female guinea pigs.
    Beedham C; Bruce SE; Rance DJ
    Eur J Drug Metab Pharmacokinet; 1987; 12(4):303-6. PubMed ID: 3449390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies by electron-paramagnetic-resonance spectroscopy of the molybdenum centre of aldehyde oxidase.
    Bray RC; George GN; Gutteridge S; Norlander L; Stell JG; Stubley C
    Biochem J; 1982 Apr; 203(1):263-7. PubMed ID: 6285895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymatic oxidation of phthalazine with guinea pig liver aldehyde oxidase and liver slices: inhibition by isovanillin.
    Panoutsopoulos GI; Beedham C
    Acta Biochim Pol; 2004; 51(4):943-51. PubMed ID: 15625566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of liver aldehyde oxidase in conversion of N-hydroxyurethane to urethane.
    Sugihara K; Kitamura S; Tatsumi K
    J Pharmacobiodyn; 1983 Sep; 6(9):677-83. PubMed ID: 6689178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Species variation in hepatic aldehyde oxidase activity.
    Beedham C; Bruce SE; Critchley DJ; al-Tayib Y; Rance DJ
    Eur J Drug Metab Pharmacokinet; 1987; 12(4):307-10. PubMed ID: 3130251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Properties of the prosthetic groups of rabbit liver aldehyde oxidase: a comparison of molybdenum hydroxylase enzymes.
    Barber MJ; Coughlan MP; Rajagopalan KV; Siegel LM
    Biochemistry; 1982 Jul; 21(15):3561-8. PubMed ID: 6288079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron paramagnetic resonance and potentiometric studies of arsenite interaction with the molybdenum centers of xanthine oxidase, xanthine dehydrogenase, and aldehyde oxidase: a specific stabilization of the molybdenum(V) oxidation state.
    Barber MJ; Siegel LM
    Biochemistry; 1983 Feb; 22(3):618-24. PubMed ID: 6301524
    [No Abstract]   [Full Text] [Related]  

  • 18. Involvement of molybdenum hydroxylases in reductive metabolism of nitro polycyclic aromatic hydrocarbons in mammalian skin.
    Ueda O; Sugihara K; Ohta S; Kitamura S
    Drug Metab Dispos; 2005 Sep; 33(9):1312-8. PubMed ID: 15932950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molybdenum hydroxylase super family shows circadian activity fluctuation in mice liver: emphasis on aldehyde hydroxylase and xanthine oxidase.
    Al-Abbasi FA; Al-Sieni AI
    Pak J Pharm Sci; 2010 Oct; 23(4):359-62. PubMed ID: 20884446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative study of the structural requirements of phthalazine/quinazoline derivatives for interaction with human liver aldehyde oxidase.
    Ghafourian T; Rashidi MR
    Chem Pharm Bull (Tokyo); 2001 Sep; 49(9):1066-71. PubMed ID: 11558587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.