These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 6549343)
1. Active transport of proline by Coxiella burnetii. Hendrix L; Mallavia LP J Gen Microbiol; 1984 Nov; 130(11):2857-63. PubMed ID: 6549343 [TBL] [Abstract][Full Text] [Related]
2. pH dependence of the Coxiella burnetii glutamate transport system. Hackstadt T; Williams JC J Bacteriol; 1983 May; 154(2):598-603. PubMed ID: 6132912 [TBL] [Abstract][Full Text] [Related]
3. Estimation of the cytoplasmic pH of Coxiella burnetii and effect of substrate oxidation on proton motive force. Hackstadt T J Bacteriol; 1983 May; 154(2):591-7. PubMed ID: 6302078 [TBL] [Abstract][Full Text] [Related]
5. Proline transport and metabolism in Rickettsia prowazekii. Winkler HH; Daugherty RM J Bacteriol; 1984 May; 158(2):460-3. PubMed ID: 6427180 [TBL] [Abstract][Full Text] [Related]
6. Active transport of L-proline in the protozoan parasite Trypanosoma brucei brucei. L'Hostis C; Geindre M; Deshusses J Biochem J; 1993 Apr; 291 ( Pt 1)(Pt 1):297-301. PubMed ID: 8471048 [TBL] [Abstract][Full Text] [Related]
7. Transport of aromatic amino acids by Brevibacterium linens. Boyaval P; Moreira E; Desmazeaud MJ J Bacteriol; 1983 Sep; 155(3):1123-9. PubMed ID: 6885717 [TBL] [Abstract][Full Text] [Related]
8. Efflux-mediated resistance to arsenicals in arsenic-resistant and -hypersensitive Chinese hamster cells. Wang Z; Dey S; Rosen BP; Rossman TG Toxicol Appl Pharmacol; 1996 Mar; 137(1):112-9. PubMed ID: 8607136 [TBL] [Abstract][Full Text] [Related]
9. Transport of sugars and amino acids in bacteria. XV. Comparative studies on the effects of various energy poisons on the oxidative and phosphorylating activities and energy coupling reactions for the active transport systems for amino acids in E. coli. Anraku Y; Kin E; Tanaka Y J Biochem; 1975 Jul; 78(1):165-79. PubMed ID: 1104599 [TBL] [Abstract][Full Text] [Related]
10. Chemically induced resistance to heat treatment and stress protein synthesis in cultured mammalian cells. Haveman J; Li GC; Mak JY; Kipp JB Int J Radiat Biol Relat Stud Phys Chem Med; 1986 Jul; 50(1):51-64. PubMed ID: 3487525 [TBL] [Abstract][Full Text] [Related]
11. Energy requirements for maltose transport in yeast. Serrano R Eur J Biochem; 1977 Oct; 80(1):97-102. PubMed ID: 21792 [TBL] [Abstract][Full Text] [Related]
12. Proline uptake in Candida albicans. Dabrowa N; Howard DH J Gen Microbiol; 1981 Dec; 127(2):391-7. PubMed ID: 7045279 [TBL] [Abstract][Full Text] [Related]
13. Carrier-mediated transport of D-ribose by Rhodotorula glutinis. Lavi LE; Hermiller JB; Griffin CC Biochim Biophys Acta; 1981 Oct; 648(1):1-5. PubMed ID: 6794623 [TBL] [Abstract][Full Text] [Related]
14. Energetics of galactose, proline, and glutamine transport in a cytochrome-deficient mutant of Salmonella typhimurium. Singh AP; Bragg PD J Supramol Struct; 1977; 6(3):389-98. PubMed ID: 22779 [TBL] [Abstract][Full Text] [Related]
19. Biochemical stratagem for obligate parasitism of eukaryotic cells by Coxiella burnetii. Hackstadt T; Williams JC Proc Natl Acad Sci U S A; 1981 May; 78(5):3240-4. PubMed ID: 6942430 [TBL] [Abstract][Full Text] [Related]
20. Transport of sugars and amino acids in bacteria. XIII. Mechanism of selective inhibition of the active transport reactions for proline, leucine, and succinate by zinc ions. Anraku Y; Goto F; Kin E J Biochem; 1975 Jul; 78(1):149-57. PubMed ID: 1104598 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]