BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 6549378)

  • 1. Characteristics of tyrosinate fluorescence emission in alpha- and beta-purothionins.
    Prendergast FG; Hampton PD; Jones B
    Biochemistry; 1984 Dec; 23(26):6690-7. PubMed ID: 6549378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Raman spectroscopy of homologous plant toxins: crambin and alpha 1- and beta-purothionin secondary structures, disulfide conformation, and tyrosine environment.
    Williams RW; Teeter MM
    Biochemistry; 1984 Dec; 23(26):6796-802. PubMed ID: 6549379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tyrosine and tyrosinate fluorescence of bovine testes calmodulin: calcium and pH dependence.
    Pundak S; Roche RS
    Biochemistry; 1984 Mar; 23(7):1549-55. PubMed ID: 6722107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tyrosine and tyrosinate fluorescence of S-100b. A time-resolved nanosecond fluorescence study. The effect of pH, Ca(II), and Zn(II).
    Turner RJ; Roche RS; Mani RS; Kay CM
    Biochem Cell Biol; 1989; 67(4-5):179-86. PubMed ID: 2775527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy minimization for tertiary structure prediction of homologous proteins: alpha 1-purothionin and viscotoxin A3 models from crambin.
    Whitlow M; Teeter MM
    J Biomol Struct Dyn; 1985 Feb; 2(4):831-48. PubMed ID: 3917120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The intrinsic tyrosine fluorescence of histone H1. Steady state and fluorescence decay studies reveal heterogeneous emission.
    Libertini LJ; Small EW
    Biophys J; 1985 Jun; 47(6):765-72. PubMed ID: 4016197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-lived fluorescence lifetime from tyrosine in a peptide derived from S-100b.
    Turner RJ; Moore GJ
    Biochim Biophys Acta; 1992 Oct; 1117(3):265-70. PubMed ID: 1420276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Test of circular dichroism (CD) methods for crambin and CD-assisted secondary structure prediction of its homologous toxins.
    Teeter MM; Whitlow M
    Proteins; 1988; 4(4):262-73. PubMed ID: 3253736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence of histones H1. A tyrosinate-like fluorescence emission in Ceratitis capitata H1 at neutral pH values.
    Jordano J; Barbero JL; Montero F; Franco L
    J Biol Chem; 1983 Jan; 258(1):315-20. PubMed ID: 6848503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative study of recombinant rat nucleoside diphosphate kinases alpha and beta by intrinsic protein fluorescence.
    Orlov NY; Orlova TG; Reshetnyak YK; Burstein EA; Kimura N
    J Biomol Struct Dyn; 1999 Feb; 16(4):955-68. PubMed ID: 10217461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tyrosine and tyrosinate fluorescence of pig intestinal Ca2+-binding protein.
    O'Neil JD; Hofmann T
    Biochem J; 1987 Apr; 243(2):611-5. PubMed ID: 3632639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence anisotropy of tyrosinate anion using one-, two- and three-photon excitation: tyrosinate anion fluorescence.
    Kierdaszuk B
    J Fluoresc; 2013 Mar; 23(2):339-47. PubMed ID: 23233051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calmodulin binding to alpha 1-purothionin: solution binding and modeling of the complex.
    Rao U; Teeter MM; Erickson-Viitanen S; DeGrado WF
    Proteins; 1992 Oct; 14(2):127-38. PubMed ID: 1409564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence properties of angiotensin II analogues in receptor-simulating environments: relationship between tyrosinate fluorescence lifetime and biological activity.
    Turner RJ; Matsoukas JM; Moore GJ
    Biochim Biophys Acta; 1991 May; 1065(1):21-8. PubMed ID: 2043649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tyrosine/tyrosinate fluorescence at 700 MPa: a pressure unfolding study of chicken ovomucoid at pH 12.
    Maeno A; Matsuo H; Akasaka K
    Biophys Chem; 2013 Dec; 183():57-63. PubMed ID: 23953399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ligand effects on the fluorescence properties of tyrosine-9 in alpha 1-1 glutathione S-transferase.
    Dietze EC; Wang RW; Lu AY; Atkins WM
    Biochemistry; 1996 May; 35(21):6745-53. PubMed ID: 8639625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. gamma-Purothionins: amino acid sequence of two polypeptides of a new family of thionins from wheat endosperm.
    Colilla FJ; Rocher A; Mendez E
    FEBS Lett; 1990 Sep; 270(1-2):191-4. PubMed ID: 2226781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tyrosine hydrogen-bonding and environmental effects in proteins probed by ultraviolet resonance Raman spectroscopy.
    Hildebrandt PG; Copeland RA; Spiro TG; Otlewski J; Laskowski M; Prendergast FG
    Biochemistry; 1988 Jul; 27(15):5426-33. PubMed ID: 3179264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of the intrinsic fluorescence of red kangaroo, horse and sperm whale metmyoglobins.
    Hirsch RE; Peisach J
    Biochim Biophys Acta; 1986 Jul; 872(1-2):147-53. PubMed ID: 3730392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Refinement of purothionins reveals solute particles important for lattice formation and toxicity. Part 2: structure of beta-purothionin at 1.7 A resolution.
    Stec B; Rao U; Teeter MM
    Acta Crystallogr D Biol Crystallogr; 1995 Nov; 51(Pt 6):914-24. PubMed ID: 15299761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.